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For the James-type space 2 generated by a sequence of functions # = { f,,} ,cn
we present a sufficient and necessary condition under which there exists a unique
minimal projection from 2z onto %z =2z Ncy.  © 1999 Academic Press

0. INTRODUCTION

Let 7 ={f,} nen» be a sequence of convex functions f,: R* - R* such
that £,(0)=0 and £,/ ;) >0, for every neN. A sequence of functions
with the above properties will be called an Orlicz sequence.

Let # ={f,} be an Orlicz sequence. For any sequence of real numbers

x={x,} put

pf(x): z fn(|xn|)

n=1

Then a Musielak—Orlicz sequence space is defined by
{.37 = {X: {Xn}neN: }{I})pg(lx) :0}

We can equip 7 with the Luxemburg norm
Ix]| # =inf{d>0: p4(x/d) < 1}.

For basic facts concerning Musielak—Orlicz spaces the reader is reffered
to [10].

Now fix any sequence of real numbers x={x,}, meN*=Nu {0},
1<ji< - <Jjayms1, and put

X

J1s jz,,,+1 = (sz -X

VR
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DEFINITION 0.1. Let 27 ={x={x,},cn €¢: [IX]| < + 00} where

x| = sup{ lz:meN* 1<), < <jopi1}-

H Jl s Jam 41
Then the space (%, |-]]) will be called the James space generated by %

Put %, =%, nc,. Note that if for all ne N f,(t) = 1> then %, is exactly
the famous James space introducted in [5] and 2z =%j%*. For other
generalizations of the James space see, e.g., [17].

Let 2(25,%5) denote the set of all linear projections from Z, onto
WYy, 1.,

P Xz YUz)=\PeL Xz, Yz): Ply,=idy }.
A projection Py € P(Xy, ¥y ) is called minimal if
1Po| = A¥s, Xy ) =nf{||P|: PP (X5, Ys)}.

The constant A(%,, X4 ) is called the relative projection constant.

Note that the problem of finding a minimal projection, from a Banach
space X onto a subspace Y, is strictly related to the Hahn—Banach exten-
sion theorem, because we look for an extension of the id: Y — Y to X of
minimal norm.

For more information concerning minimal projection (existence, effective
formulas, uniqueness or estimates of the norm) the reader is referred to
[24, 6, 8, 11, 12, 14, 16].

Now, take Py e (4%, ¥4 ) given by

Pyx=x—(lim x,)-(1,1,..).

n— oo

The aim of this paper is to characterize those James spaces %5, for
which P, is the unique minimal projection onto %, (see Theorem 2.5). We
also prove that for any Orlicz sequence HPOH =1 (see Theorem 2.2).
This generalizes the results from [ 13, 9] concerning the case when # is a
constant sequence.

Now we present some results and definitions which will be of use later.
Let # be an Orlicz sequence and let

p(X)=sup{pz(x;, .5  )mMeEN*  1<ji< -+ <joyuirf. (0.1)
We will refer to it as #-modular.

Remark 0.2. Let Z be an Orlicz sequence. Then for arbitrary x = {x,,}:

(1) forevery me N* 1</, < <jans1 Xj... .., Elo>
2) Ix, ., J=min{M>0:pa(x;, , [/M)<I}.
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Applying Remark 0.2 we obtain that %, is a Banach space, and |- || is
a norm. Moreover, we have

LemMa 0.3.  For arbitrary xe€ X5, p(x) <1 if and only if | x| < 1.

Now we present some properties of convex functions, which can be
found in [ 7, Chap. VII] (see also [1, 15]).

In the following theorems J denotes an open (not necessarily bounded)
interval.

THEOREM 0.4. For function f:J— R the following conditions are equiv-
alent:

(1) function f is convex;

(2) for any xy<x,<xj, (X3—X1) f(x3) <(x3—x1) f(x3) + (x3—x,)
S(xq);

(3) for any x;<x;<x3, (f(x3)—f(x1))/(x2—x1) <(f(x3) — f(xy))/
(X3 —x1);

(4) for any x;<x,<x3, (f(x3)—f(x1))/(x5—x1) <(f(x3) = f(x5))/

(X3 —X5).

THEOREM 0.5. Let 2 J — R be a convex function. Then the coresponding
Sfunction I defined by I(x, h) = (f(x+h)— f(x))/h is increasing with respect
to each variable.

COROLLARY 0.6. Let f:J— R be a convex function. Then for arbitrary
uzv=0 function g(x)= f(x +u) — f(x +v) is increasing.

THEOREM 0.7. Let f:J— R be a convex function. Then for every xeJ
there exists the right derivative f' (x), and the left derivative f'_(x).
Moreover for all x, yeJ x<y:

() f) <), f(x0) <S4 (p) and f7(x) < [ (x);

(2) lim, .+ fl () =lim,_, .+ [ (t)=f"\(x) and lim,_ .- f".(1)=
lim,_, . /()= f"_(x).

THEOREM 0.8. Let f,,: J—> R be a sequence of convex functions, let A be
a dense subset of J. Suppose that for every ne N:

(1) sup, f.(x)< + o0, for every x € .

(2) inf, f,(x)> — o0, for an x4 €J.
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Then for every compact set E < J there is M >0 such that each f,, restricted
to E, satysfies a Lipschitz condition with M.

THEOREM 0.9. Let f,: J— R be a sequence of convex functions. If the
sequence { f,} converges pointwise on J to a finite function f, then f is convex.

THEOREM 0.10. Let f,: J = R be a sequence of convex functions, and let
A be a dense subset of J. If the sequence { f,(x)} converges (to a finite limit)
for every xed, then the sequence {f,} converges uniformly on every
compact subset of J.

COROLLARY 0.11. Let f,,: J = R be a sequence of convex functions. If the
sequence { f,} converges in J to a finite function f, then f is convex. Moreover
the sequence { f,} converges uniformly to f on every compact subset of J.

THEOREM 0.12. Let f,: J— R be a sequence of convex functions. If the
sequence {f,} converges pointwise on J to a finite function f, then for
arbitrary sequence {x,} = J, x, = xo €J

lim sup (fn)/+ (xn) < f,+(x0)'

n— oo

1. TECHNICAL RESULTS

Let # ={f,} be an Orlicz sequence. To the end of this section, putting
£.(0)=0 for x <0, we can treat each f, as a function defined on R.
Now let us define the following auxiliary functions:

y=sup f,, Y,= sup f;,, @=limsupf,, ¢@,=sup f.(1.1)

neN 1<i<n n— oo izn

DeriNITION 1.1, We will call an Orlicz sequence # ={f,} a proper
Orlicz sequence, if the function y is locally bounded at zero. Otherwise,
this sequence will be called degenerate.

LemMa 1.2, Let F ={f,} be a degenerate Orlicz sequence. Then for
every x>0 (x)= + o0.

Proof. Since functions f,, are increasing, \ is also increasing. Note that
Y is not locally bounded at zero. There is a sequence {x,} — 0% such that
lim,, ,  ¥(x,) = 4+ co. Take any x > 0. Since ¥(x,) <Y(x) for n sufficiently
large, the lemma is proved. ||
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THEOREM 1.3. Let # ={f,} be a proper Orlicz sequence. Then there is
an interval I=(— o0, d,), where dy> 0, such that:

(1) o and @ are finite and convex on I,

(2) ,, converges uniformly to \y on every compact contained in I,
(3) for every neN, ¢, is convex;

(4) @, converges uniformly to ¢ on every compact contained in I.

Proof. Since Y is bounded on /= (— o0, d,) for some d,> 0, i is a finite
function on 1. Let us define ¢, ,=Supi<;<in fi- It is clear that ¥, —
and ¢, , — ¢, pointwise on /. Since for each k ¢, <V, ¢, is a finite func-
tion on /. Moreover V,,, ¢, , are convex. Thus by Corollary 0.11, y, ¢, are
convex on I, and also y, converges uniformly to iy on every compact
contained in /. Since ¢ <V, ¢ is a finite function on /. We also know that
@ — @ pointwise on I, so from the previous considerations it follows that
¢ are convex on I. Thus by Corollary 0.11 function ¢ is also convex on
I, and in addition ¢,, converges uniformly to ¢ on every compact contained
inl |

From Theorem 0.8 we immediately get

CorOLLARY 1.4. If F ={f,} is a proper Orlicz sequence, then there
exists @', (0).

LemMA 1.5. Let I=(—0,d,), where dy>0. Let 4 be a sequence of
convex functions g,:1—R* such that g,0)=0, g,/ > 0. Assume
Sfurthermore that {g,} converges pointwise on I to a convex function g. Then
Sfor any sequence {x,,} =(0,d,), x,, >0 and for any ¢>0 there exists n,
such that inequality

!

(gn)/+ (xm) - g+('xm) <&

holds for any me N and n > n,.

Proof. Suppose, to the contrary, that for some sequence x,, > 0% and
for some ¢ >0 inequality

(8n)'4 (xx) — &' (xp) =€ (12)

holds for a certain subsequence n, - + oo and ke K< N.
There are two possibilities:

(1% {x;: ke K} is an infinite set.
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Passing to the subsequence, if neccessary, we may assume that x;, — 0.
By Theorem 0.7

Jim g’ (x) =g, (0) (1.3)
and by Theorem 0.12
lim sup (g,,)" (xx) <g.(0). (1.4)
k—

Hence by (1. 2) we also have g’, (0) > ¢+ g, (0), a contradiction.
(2°) {x,: ke K} is a finite set.
Without loss, we can assume that (g, ), (x)>g (x)+e, for some

x€e[0, dy) which, by Theorem 0.12, leads to a contradiction. ||

COROLLARY 1.6. Let F ={f,} be a proper Orlicz sequence, and take
I=(—o0,dy) from Theorem1.3. Then for any sequence {x,} <(0,d,),
X,, = 0 and for any £¢>0 there exists ny such that the inequality

((pn)l—b— (xm) - ¢’+(xm) <&
holds for any meN and n>=ny. Here @, and ¢ are functions defined by
(1.1).

Proof. A sequence {¢,} converges pointwise on R to a function ¢,
which by Theorem 1.3 is finite and convex on /. Thus a sequence
4 ={¢,/,;} fulfills the assumptions of Lemma 1.5. ||

Lemma 1.7. Let F ={f,} be a proper Orlicz sequence. Then for any
&> 0 there is 0 >0 such that for arbitrary sequence {d,} < (0, ), d,, — 0,

holds for any me N and n>n, (here ny depends on {d,}).

Proof. Fix ¢>0. Take I=(— o0, d,). By Theorem 1.3, ¢ is finite and
convex on I. By Theorem 0.7 there is ¢ € (0, d;) such that for any x <dJ

@' (x) — 9" (0) <e/2. (1.5)
Take any sequence d,, —» 0% contained in (0, ). By Corollary 1.6, we get
(@) (dy) — @' (d,,) <&/2 (1.6)

for any n>n, and me N.
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Combining (1.5) and (1.6) we obtain
(¢.)+(d,) =9 (0)=[(0,) (dy,) — @' (d,)] = [¢"s(d,,) — 0" (0)]
<egf2+¢e2=e. (L.7)

Hence

(@,)4 (dy) <e+ ¢, (0) (1.8)

for any n>n, and me N.
By Theorem 1.3 functions ¢, ¢, are finite and convex on /. Applying
Theorem 0.4 and Theorem 0.7 we get

o(d,,)
i

m

@' (0)< forany neN

and

®(d,,)
d b

m

(@,) 4 (dy) = (0,)_(dy) = forany m,neN.

Consequently, by (1.8)

®,(d,,)
d

m

?(dm)
d

m

<(¢,)y(d,) <e+ ¢, (0)<e+
for any n>n, and me N, which gives the result. |

THEOREM 1.8. Let F ={f,} be a proper Orlicz sequence, such that
@' (0)=0. Take convex functions hy, .., hy: R* - R* with h;(0)=0 and
hi/ o, 4wy >0. Then for any ¢ >0, b>0 there is 6 >0 such that for arbitrary
{d,} =(0,90), d, — 0 there exists ny such that

ht(b +c dm) > ht(b) + (pn(dm)
Sor any ie {1, .., s}, n=ny and meN.
Proof. By Theorem 0.4 we get

hi(b+cx)—h,(b) = (h,), (b) - cx, forany ie{l,..s}, and x>0.
(L.9)
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Put ¢:=min,.(; 4 {(4,)(b)-c}. Note that ¢>0 and (%,)", (b)>0, for
each i. Hence ¢>0. Since lim,_ ¢+ (¢(x)/x)=¢",.(0)=0, there is 6,>0
such that

(p(x)<§x, forany x<d;. (1.10)

For ¢/2 choose J, from Lemma 1.7. Put d =min{d,, J,}.
Now take any sequence d,, —» 0" contained in (0, 6). By Lemma 1.7 and
(1.10),

0uld) = [Pl dy) = 9(dy) ]+ 9(d,) <3 dyy 5 dyy =, (L11)

for any n>n, and me N.
By (1.9) and (1.11),

hz(b+6dm) _hl(b) >8dm>¢n(dm)

for any ie {1, .., s}, n>nyand meN. |

THEOREM 1.9. Let h: RT™ > R™* be a convex function with properties:
h(0)=0and h/, ;.,)>0. Let g: R™ - R* U { + 00} be a function for which
there is dy>0 (d, can be o) such that a function g is finite, convex and
8/ (dy. +00)= t00. Assume furthermore that g(0)=0, g/ 4,>0, g(0)>0
and g is increasing on R. Then there is ce(0, 1) such that for any be R,
de R\{0} with h(|b|) <2, h(]d]) <2,

h(1b + ¢ d]) <h(|b]) + g(|d]).

Proof. Suppose b>0, d>0. Assume =g’ (0)>0. By Theorem 0.4
and by 1i1’n>c—>d04r g(x) < g(do)’

g(x)

ﬂ:g’+(0)<?, forevery xeR™. (1.12)

Note that 0 <d < x,, 0 <b < x, where x, is such that /(x,) > 2. Hence by

Theorem 0.8, /& fulfills a Lipschitz condition on [ —2x,,2x,] with a

constant M. Take ce (0, 1) such that ¢ < /M. Then
hb+cd)—h(b)<M-cd<pd<g(d)

for any be [0, x,), de (0, x;).
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Note that for any b, d
h(|b+cd))<h(|b] +c|d]),
which completes the proof. ||

CoroOLLARY 1.10. Let F ={f,} be a proper Orlicz sequence, with
@' (0)>0. Take a convex function h: R* - R™ with properties: h(0)=0
and hf o, 45> 0. Then there is ce (0, 1) such that for any beR, de R\{0},
h(|b]) <2, h(|d]) <2 we have

h(1b + ¢ d|) <h(|b]) + @(Id]),

where ¢ is given by (1.1).

Proof. By Theorem 1.3 we can take the greatest number d, (or oco) such
that a function ¢/ _, 4, is finite and convex. Then ¢ with d, satisfies the
assumptions of Theorem 1.9. ||

LemmA 1.11. Take Pe P( Xy, ¥5) given by Px=x—(lim,_ . x,)-Y,
Sor every xe Xz, where y={y,} ecn € X and lim,,_, , y,=1. Fix X€ Z5.
Then for any ¢>0 there are 1 < j, < j,, M such that for any M > M, we
can choose Ko(M), jz, ..., Jopr for which

pé’;((PX)jl,‘.., jZM,k) >p(Px)—e

holds for every k = Ky M).

Proof. The proof is tedious and uses only the continuity of the
functions f;, thus we omit it. |

Remark 112. PeP(Zy,%5) is a norm-one projection if and only if
for arbitrary x e Z» p(x) <1 implies p(Px)<1.

Lemma 1.13. Let # ={f,} be a proper Orlicz sequence. Consider the
sequence X = {x,}, such that x,=x for every n=ny. Then X € X.

Proof. The proof is routine, so we omit it. ||

Remark 1.14. Let # ={f,} be a proper Orlicz sequence. Then the
following conditions are equivalent:
(1) PeP( Xz, ¥z);
(2) Pis of the form Px =x— (lim
y: {yn}neN e‘%ﬂf and 1imn—>oo yn: l

x,) -y, for every x € Z5, where

n— oo

Proof. For a projection Pe P (%5, %) putting y=e— P(e), where
e=(1,1,1,..), we get the result. |
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2. MAIN RESULTS
If 7 ={f,} is a degenerate Orlicz sequence, then by Lemma 1.5 we can

easily get the following

Remark 2.1. Let # ={f,} be a degenerate Orlicz sequence. Then
Xz =%z and consequently 2(Z,, ¥z )= {id}. Therefore, we will further
deal only with the case when # = { f,} is a proper Orlicz sequence.

THEOREM 2.2. Let Z ={f,} be a proper Orlicz sequence. Take
PyeP( Ay, ¥s) given by Pyx=x—(lim,_ x,)-(1,1,..), for any
x={x,} €Zz. Then |P,| =1 and consequently P, is a minimal projection.

Proof. In view of Remark 1.12, it is sufficient to show that for any
X € 45 inequality p(x) <1 implies p(Pyx) < 1.

To do this take any xe 2 such that p(x)<1 and lim, _, , x,,=d#0.
Fix any ¢ >0. By Lemma 1.11 there exist My, j; < --+ < jour, Ko(M) such
that

p(Pox) —¢ <P9((P0X)j],.4.,j2M0,k)s forevery k=Ko(My). (2.1)

Since |x,| —|d| and |x,—d|— 0, there is k;> K, such that |x, |>|d|/2
and |x,, —d| <|d|/2. Then

Sty 10X 1) = Sagy1(1d1/2) = Fagy 11 ([xg, — dI). (2.2)

Since Pox ={x, —d},cn. it follows from (2.2) that

n

Pr((X);, .. jZMO,kl) Zp((PoX);,, .. jZMO,kl) > p(Pox) —e.
Hence p(Pyx) < p(x), which completes the proof. |

Now let us proceed to the proof of the main result. For this purpose let
us make a usefull definition.

DerFINITION 2.3, Let ny, ny, ..., My 41 be fixed integers, all even or all
odd, such that n, ;> n; + 6. For arbitrary numbers b, d, e let us denote by
x(b, d, e) the following sequence

n n ny,
x(b,d, e)=(0,..,0,9b,0,..,0,ye,0, ..., 0, yeo, 0,..,0,dd,..), (2.3)

where ye { —1, 1}. By Lemma 1.13, x(b, d, ¢) € Z 5.
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Now we will prove a crucial lemma.

LemmA 2.4. Let # ={f,} be a proper Orlicz sequence. Take {n;} the
same as in Definition 2.3. Then for any 0<b,<b, there exist e>0
and d,>0 such that for all bel[b,,b,] and d<d, we can choose
I<li< - <, for which

(1) i y=1 then p(x(b, d, e)) < f1,(D) + fi(e) + -+ + fi (€) + 20, (d);

moreover, for SOme jy, .., jo, the sequence X(b, d, e); has a form

n n ny,
(0, ., 0,0% — b, 0,.., 0, 0% —ye, 0, .., 0, 0% —ye, 0,0, ...);

v v Y
/;th coordinate Lyth coordinate In0 th coordinate

(2) i y=—1 then p(x(b,d,e))<fi(b)+ fi(e)+ - + 1} _1(e)+

flno(e+d)+2gy,,0(d); moreover, for some ji, .., j2m the sequence

x(b,d, e); .. ;, has aform
m &) Png+1 Ty
* *
0, ...,0,0%—9b,0,..,0,0¥—1ye,0, .., 0,d—ye0,0,..),
~—— N~——
I;th coordinate L th coordinate lnoth coordinate

(the sequence x(b, d, ¢); . ; defined above differs from a similar sequence

described in (1) only on the coordinate I, ).

Here the symbol z denotes lhat z is taken from the kth wordmate of the

n

sequence X(b, d, e), and 0* % is a shortened notation for 0 —z.

Proof. Let us denote by I" the set of all triples (y,, y,, 1) such that
71 €1{0, 1}, 1 €{0, 1}, y,=1 when y, =0, and y, € {0, 1} when y, =1.

For fixed (yy,7,,71) €l a sequence [y, .., 1, (ko<ng) will be called
(71, 72, ¥1) possible if there exist j, < .-+ < j,,, .1 such that

pz(X(b.d.e); ;. )=[i(1ib—72)+ fr(e)+ - + [ (e—pyid)
+ some elements of form f,(d),

where k>, .

Let yi(d) =SUPg <, <k, 1/1,(d) + fi,((1 =71) d)}. By the definition of
p(x(b, d, e)), it is easy to see that

p(x(b, d, e)) =max {max{ f;(y;b—y,e) + fi,(e) +
+ fi (e —yrid) + 201 (d), where (1, 72, 94) €T

and Iy, ..., [ is a (71, 72, 1) possible sequence},
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max { b= 1)+ 2(d), where 71,727y €

and zlg{”l;ln, {x},(d)}}. (24)

Since numbers /4, ..., [, appearing in possible sequences can be estimated
from above by [(n,, + 1)/2] we can write above max instead of sup .

Now, consider the functions f, = inf, n<[(k+1)2] Lo fr= SUP, < [k + 1)2] Jn>
@, =sup;s, f;- (Here the symbol [«] denotes the greatest integer less or
equal to a.)

Note that fk and f, are convex for each k, moreover f,(0)= f,(0)=0.
Hence f, and f, are also increasing.

Choose d, from Theorem 1.3. Then ¥/ _, 4, is finite and convex.

Now take e € R for which

O<e<dy/2 and  ngy(e) < f,(by). (2.5)

By Theorem 0.8, f, fulfills a Lipschitz condition on [ —(b,+1), by +1].
Hence, by (2.5), there is d; such that for any d<d;,b>b, and any

P15 V25 V10
(1) fu(rib—yid)+20(d) < £, (7:b) + fnno(e);

n, +1 .
(2) for any ig{ "2 }f,~(e+d)—f,-(e)+2zp(d)<fnn0(e)

i (2.6)
(3) (no—=1)y(e) +le+d)+2y(d) < f,(b1);

4) 2y(d) <, (e).
We divide our proof into two steps.
Step 1. The following equality holds
p(x(b, d, e)) =max{ f; (b) + fi(e) + - + f; (e=yid) + ! (d)
where y} € {0, 1} and /y, .., [,
is a (1,0, y}) possible sequence}.
For this purpose let us make some estimates.

(1) For any y,, 7, and [, <[(n, +1)/2]

max{ f;(y1b—yyid) + 1), x§(d)} < fo (b =771 d) + 20(d)
< fu(0) + T, () < [(B) + fiy (o).
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The last equality holds for /' such thatf,,l(b) = fi,(b) and I' < [(n,,+ 1)/2].
Note that the sequence /4, [+ 1 is (1, 0, 0) possible.

(2) For any system (0, 1, 77) and (0, 1, y}) possible sequence /4, ..., Iy,
we have

file)+ -+ fy (e—yyid) +29(d)
S(ko—1) ¥(e) + (e +d)+2y(d)
<(no—1)y(e) +yle+d) +2y(d) < f,(by) < [, (b) = f(b),

where /| <[(n; +1)/2]. It is clear that the sequence /] is (1, 0, 0) possible.

(3) For any system (1, 1,7}) and (1, 1, y}) possible sequence /i, ..., Iy,
we have

Si(b—=e)+ - + 1) (e=pyrd) + fie(d) + fi,((1 =71) d)
<Sy (D) + -+ + [y (e =y71d) + fie(d) + fie,((1 =71) d)

for any k, >k, >, .

Let pz(x(b, d, e); ..}, .,) has the form of the left side above inequality.
Assume furthermore that e appearing in the factor f; (b —e) is taken from
the n;th coordinate in the sequence x(b, d, e). Between the n,th coordinate
and the n;th coordinate in the sequence x(b, d, e) there is at least one zero.
Taking this zero and putting it in place of earlier mentioned e in the
sequence x(b, d, e); . ; ~ we get a sequence which #-modular (see (0.1))
is equal to the right side above inequality. Thus sequence /y, ..,/ Is
(1,0, y}) possible.

Step Il If /< --- <[ is a (1,0, y}) possible sequence, then there are
Lyy o Iy i<ly< oo <y, and {1y, by, ., Iy } = {1y, 15, .., 1, }. Moreover,
the sequence [y, 15, ..., 1, is, for any yje{0,1}, (1,0, y]) possible, also

there are jy, ..., jo, such that x(b,d, e); . ; hasa form
n n Mg —1
0,..,0,0%—19b,0,..,0,05—ye, .., 0*¥—9e, ,0,..,0,
—— —— ——
I;th coordinate I3th coordinate l;xo—lth coordinate

n

o
x(b,d, e),—ve,0,..)
——

I o th coordinate

for any k >n,.

To do this, take a (1, 0, }) possible sequence /i, ..., /. Then there exist
jla ooy j2m+1 such that p.?'_(x(bs d: e)jl,.,.,j2m+1) =fll(b) +ﬁ2(8) + o +ﬁk0
(e —yyid). If in the sequence x(b, d, ¢) .» € (or b) which appears on

J1s - Jom+
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the /;th (resp. /;,,th) coordinate is taken from the n,th (resp. n,th) coor-
dinate of the sequence x(b, d, e), then [, | — ;< (n,—n,)/2—1.

Consider a sequence X(b,d, €)1 5, . op(n—1)21. ;. .. e where after n,
there are all numbers in succession up to ngy. In this sequence between the

terms of forms 0% —ye (or 0*— yb) and 0% —ye there are exactly
(n,—n,)/2—1 coordinates (having a form 0 —0 or 0 — ye). Thus by remov-
ing a proper number of systems having a form 0—0 or 0 —ye we get a
sequence X(b, d, e);; . Jom? which has on the /;th coordinate (i>1) term
0* —ye, and on the /;th term 0* — yb.

Assume that this sequence (ie., x(b,d, e); féml) has ¢ coordinates of
forms 0* —ypb or 0* —ye, and designate them successively by s, .., s,
(obviously /; =s, and {l, ..., [ } {51, 0r $,})-

Fix coordinates s; and s;,, (i€ {l,..,t—1}), assume that a non-zero
term (i.e., yb or ye) on the s;th (resp. s;,;th) coordinate in the sequence
x(b,d, e);. . Jom is taken from the n,th (resp. n,th) coordinate of the
sequence x(b, d, e).

There exists ue {p+1, ..., ¢} such that

H,_1—n n,—n

7 2 <si 1 — 8 < 3 Z (2.7)

If j% +1=n, and j%, ; =n,, then considering the sequence

x(b,d, e, . . n 2 2 (2.8)

15 wees T2 Typs wees Ty 4 15 J2B 435 5 T2y >

where after n, appear successively all numbers up to 7, ;, we can see that
n
in this sequence between coordinates in which there appear terms 0* — ye

(or 0*—y117) and O*—)'/lé there are (n,—n,)/2—1 coordinates, of which
u—p—1 have a form 0*—ye. Since (n,_;—n,)/2>u—p—1 and (2.7)
holds true, then by removing a proper numbers of systems of the form
0—0 from the sequence (2.8) we will get the sequence /i, ..., j5,, such that
x(b,d, e); . Tomy is equal to x(b,d, e); T4y O coordinates from 1 to s;
and from the coordinate s;,,; up. Moreover, in this sequence on coor-
dinates from s;+ 1 to s, +1— 1 there appear all terms of the form 0* — j';é,
for all je{p+1,.,u—1}, and on the coordinate s,,, there is a term
0* —ye

Now applying this procedure to a sequence x(b, d, ).
dinates s,, 5,, we get a new sequence and applying to it the same procedure
to coordinates s,, 55, we get the next sequence, and so on. Finally, we get
a sequence x(b, d, e);; o which has ¢, coordinates of the form 0* — ye
or 0* —yb. Let these are the places ry <r,<--- <r, then /;=s5,=r; and
{Ls s I} <1525 s 8,) < {72, . 1, ;. Moreover on the coordinate r; there is

.~ and coor-
my
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nl n;

a term 0* —yb and on the coordinate r; (for i=2, .., ¢;) 0¥ — yé,’. Now by
completing a sequence j{, .., j5,, 10 a Sequence ji, .., jom,, n,l+1, n 1+l
s My 15Ny 1+ 1,m,, k, where after the term j3, there appear
successively all pair of terms from n, ,,n, . +1 ton, ,n,_1+1, we
will get a sequence which has the properties required in Step IL

Now let us come back to the proof of lemma.

First we consider the case y=1.

Let Iy, Iy, ., Iy, (kg <ng) be any (1, 0,7}) possible sequence. Choose for
it a sequence /1, [}, ..., I, from Step II and assume that [} ¢ {/}, 5, ..., [, } .
Then

Ji(B) + e+ -+ + [y (e=rid) + 2] (d)
<f,1(b)+f12( ) +fzk( )+2lﬁ(d)
<f11(b)+f12 '+flk e)+ /i (e
< (D) + fie) + - + 1, (€)
Thus by Step I and properties of {ll, Iy, ... I, } we get
p(x(b, d, e)) =max{ f,(b) + fi(e) + -+ + [} (e=y1d) + xj}(d),

where y} €{0, 1} and /4, ..., lk
is a (1,0, y}) possible sequence}

=max{fi(b)+ fi(e) + - + i, () + 1 (d),

where [, ..., [

0

is a (1,0, 0) possible sequence

ny
having properties required in Step I}

= (for a certain (1, 0, 0) possible sequence /3, ..., [,
having properties required in Step II)

=/ab)+ fa(e)+ -+ + [ (&) + 73t (d)

<)+ fule) + -+ [l (e) + 29, (d).

Hence the lemma is proved in this case.

Now, consider the second case, ie., y= —1.

Let Iy, [y, ., Iy, (kg <ng) be any (1, 0,7}) possible sequence. Choose for
it a sequence /y, [}, ..., I, from Step Il and assume that /] ¢ {h, 1, .., lko}.
Then

i)+ fife) +
<Sub)+ file)+ o+ £ (e+7hd) + 29(d)
<f(b)+ file)+ - +f1k0(e) + ()
<Lub)+ fule) o + fi (e +d).

-+, €+V’1d)+x¥,§0(d)
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Thus by Step I and properties of {/,, /5, .., [, } we get

p(x(b, d, €)) =max{f,(b) + fi(e) + -+ + [} (e +71d) + 2] (d),
where y} €{0, 1} and /4, ..., I,
is a (1,0, y}) possible sequence}
=max{/,(b)+ fi(e)+ - +f, (e+d) +1] (d).
where /y, .., I, is a (1,0, 1) possible sequence
having properties required in Step I}
= (for a certain (1, 0, 1) possible sequence /], ..., I,

having properties required in Step II)
=/ub) + fule) + - + [yl (e+d) +X?;O(d)
<)+ fule) + oo+ fil (e+d) + 29, (d).
Hence the lemma is proved in this case, too. |

Now we are able to prove the following

THEOREM 2.5. Let F ={f,} be a proper Orlicz sequence. Take the
“natural projection” Py € P(Xy, %) defined in Theorem 2.2. Then P is the
unique minimal projection in P(Xz, ¥y ) if and only if ¢’ (0)=0, where
@ =limsup, _, o, f,-

Proof. By Theorem 2.2, P, is a minimal projection in (X, ¥5)

Suppose ¢’ (0)=0 and take any Pe (2%, %5 ). By Remark 1.14 there
isy={y,} €Zz,lim,_ , y,=1 such that

Px=x—(lim x,)-y, forany x={x,} €.

n— oo

Now asume that P # P,. There are two possible cases:
(1) There is a subsequence { y, } of the sequence {y,} with properties:

For any keN y, >y, ., and y, > Vg, » MOTCOVET Y, >V, 4 1.

Numbers {n,}, keN are all even or all odd, and for any keN
Mg yq >N+ 6.

(2) There is a subsequence { y,, | of the sequence {y,} with properties:

For any keN y, <y, ,, and y, <y, ., moreover y, <y, ;1.

Numbers {n,}, keN are all even or all odd, and for any keN
Mg yq >N+ 6.



THE UNIQUENESS OF NORM-ONE PROJECTION 89

Put c=1[y, y1—y,|>0and y=sgn(y, 1 — ).

Consider functions f, =inf, (x4 1)21 o0 fe=SUPn<r+ 121 frs Pn=
sup;s, f;- (Here the symbol [a] denotes the greatest integer less or equal
to o.)

Note that fk and f, are convex for each k, moreover f,(0)= f,(0)=0.
Also lim, , . fi(x)=lim,_,  fi(x)= +co. Therefore there are b,,b,,
0<b, <b, such that

P<luby<i<l<7,(b,). (2.9)

Choose d, from Theorem 1.3. Then y/(_, 4, is finite and convex.

For numbers ¢ >0, b, >0 and functions fi, ..., f{(s, +1)27 take 6 >0 from
Theorem 1.8. Take any sequence d, —»0%, d,<min{d,d,/2}. By
Theorem 1.8 there is n, such that

Jilby+cd,) > fi(by) + 2¢,(d,)

for any ie {1, .., [(n,+1)/2]}, and ve N.

By Corollary 0.6, a function %;(x) = f;(x+ cd)— f;(x) is increasing, for
fixed ¢,d, i, thus for b>=bh, we have f;(b+cd)—f;(b)= fi(b;+cd)—
Ji(b1)>2¢,(d). Hence we get

Ji(b+cd,)> fi(b) +2¢,(d,) (2.10)

for any ie {1, .., [(n,+1)/2]}, veN, and be[b,, b,].

For b, <b, choose e, d, from Lemma 2.4. Since d, — 0 there is d, <d;.

For any be[by, b,] consider the sequence x(b) =x(b, d, , ) (see Defini-
tion 2.3). Let us remind that b, e, d, fulfill (2.5) and (2.6) (see the proof of
Lemma 2.4).

By the formulas on P and x(b) we get

Px(b)=(—dyy1, o =dy Y15 70— Y dys —Vu 1 dyys s y€— Y, dy
= Yyt Ayys s Y€ = Yy yy =V 1y (L= py ) dy, o).
oY1 \n{_/ i 1 i
Now we are going to show that (in both cases (1) and (2))
p(Px(b)) > p(x(b)), forevery belb,, b,]. (2.11)

Consider the case (1), then y= —1.
Take /y, ..., I, and jy, ..., ja, from Lemma 2.4, point (2). Modifying vy, if
necessary, by (2.10) and Lemma 2.4 we have
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p(Px(b)) = p(Px(D));,. ... ;,,)
2 il = Yuerdyy+ b+ p, dy 1)
+ /(= Vnyrdyte+ v, dy 1)+ -
S (= Vuy vrdyFety, dyl)
+ 1, U=y, ) dy+ety, dyl)
=f1(b+ (Vuy = V1) dy) + fr(e+ (Vuy— Yy 1) dy) + -+
=c =0

+fln0_1(e+(yn 1_ynn0_l+l)d3)

o~
—~—
=0

+ﬁn0(e+dv0+(yn"0_yn )dvo)

= fi(b+cd,)+ f(e)+ . + /i, (&) + 1, (e+dy)
> (D) + file) + -+ fy _(e)+ 1) (e+d,)+20,(dy)
= p(x(b)).

Now consider the case (2), then y=1.
Take 1y, ..., [, and jy, ..., ja, from Lemma 2.4, point (1). Modifying v,, if
necessary, by (2.10) and Lemma 2.4 we have

p(Px(b)) = p(Px(D));,. ... 1)
2 il = Yuy o1 dyy—b+ yy dyl)
+ =V dyy—e+ yu,dy )+ -
+ 4=V, c1dy—e+y, dyl)
= f1,(b+ (Vn 1= Vu) dy) + Sr€+ (Vuyp1— ) dy) + -+
=c =0

+fln0(e+ (y"n0+1_ ynno) dvo)

no+1

=0

= fi(b+cd,) + fi(e)+ - + 1 ()
> (D) + fie) + -+ + [y, (€) + 20, (dy)) = p(x(D)).

Now, consider a function ¢: b p(x(b)). It can be ecasily seen that for a
fixed d,, and e this function is continuous. And since, by Lemma 2.4, (2.6),
and (2.9)
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1((by) = p(x(b1)) < [, (b1) + (no —1) Y(e) + (e + d,) + 2Y(d,)

Thus for this b,, by (2.11), we have

p(Px(bo)) > p(x(bo)) = 1.

Hence, by Remark 1.12, || P|| > 1, and consequently P, is the only minimal
projection and has norm equal to 1.

To prove the converse suppose ¢’ (0)>0 (by Corollary 1.4 ¢'.(0)
exists). Take ce (0, 1) from Corollary 1.10 for a function &= f;. Put

Yo=(1—¢1,1,..), (2.12)
and let
P:2zoxH—x—(lim x,) -y, €¥. (2.13)

By Remark 1.14, Pe (X5, ¥z ). Obviously P # P,, since y, #(1, 1,1, ...)
and there is x€ 27\,

Take any x = {x,} € Z#, p(x)<1 and denote d=1lim
that

Xx,. We show

n— oo

p(PX) < p(X).

Without loss, we can assume that d # 0.
Fix any ¢ > 0. By Lemma 1.11, we can take 1 < j, < j,, M, such that for
any M > M, we can choose Ky(M), js, ..., joar Such that

P#((PX); . i) > P(PX)—¢ (2.14)

for every k= Ky(M).
If j, #1, then by (2.14) we obtain

PX)Zpr(X; amy Ky(Mg) = Pf((PX)jl, jZMO,KO(MO)) > p(Px) —é,
that is,

p(x)>p(Px)—e.
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Now assume that j,=1. It will be shown that there exist M;>M,,
K, > Ky(M,) such that

Sillxy, = x1 1) + far 11Xk, 1) = fillx;, — X1+ ed]) + far o 1([xk, — d]),
(2.15)

where j,, My, M, Ko(M,) are chosen from (2.14).
If not, then for any M > M,, K= Ko(M) fi(1x;,—x1 ) + far1(lxgl) <
Jillx;, —x1 4+ cd]) + fars1(Ixg—d]). Since xx — d, we get

Sillxg, =21 ) + farsa(ld]) < fillx, — x1 + cd])

for any M = M,.
But by the definition of ¢ there exists a sequence {M,} such that
Sar(1d]) = @(|d|), I — co. Hence

Sillxg, =20 ) + fag (1d]) < fillx;, — X1 + cd])

for any /e N. Passing with / to infinity, we get

Sillx,, —x1 D)+ o(ld]) < fillx;, — x, + cd]). (2.16)

By (2.16), ¢(|d])< +o. Since fi(|x;—x;[)<2 and fi(|d]) <2 (it
follows from p( )< 1), by Corollary 1.10 we get

Fillxy, = x1 4 ed)) < fi(1x;, = x1 ) + o(Id]), (2.17)

a contradiction with (2.16).
Now, for M, choose numbers jj, ..., jo,, 41 from (2.14). Note that, by
(2.13), (2.15) is equivalent to

p?(le’“*,szl,Kl) >p?((})x)jl,...,jZMI,Kl)-
By (2.14),
p(X)Zpz(X; . jZMl,Kl) = p7((PX); . jZMl,Kl) > p(Px) —e.
Thus in both cases we have proved that p(x) > p(Px) —e, for any ¢ > 0.

By Remark 1.12, ||P| =1, and consequently P is a minimal projection
different from P,. |
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