The Uniqueness of Norm-One Projection in James-Type Spaces

Lesław Skrzypek

Department of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland E-mail: skrzypek@im.uj.edu.pl

Communicated by E. W. Cheney

Received May 21, 1998; accepted in revised form November 5, 1998

For the James-type space $\mathscr{X}_{\mathscr{F}}$ generated by a sequence of functions $\mathscr{F}=\{f_n\}_{n\in\mathbb{N}}$ we present a sufficient and necessary condition under which there exists a unique minimal projection from $\mathscr{X}_{\mathscr{F}}$ onto $\mathscr{Y}_{\mathscr{F}}=\mathscr{X}_{\mathscr{F}}\cap c_0$. © 1999 Academic Press

0. INTRODUCTION

Let $\mathscr{F} = \{f_n\}_{n \in \mathbb{N}}$, be a sequence of convex functions $f_n : \mathbb{R}^+ \to \mathbb{R}^+$ such that $f_n(0) = 0$ and $f_n/_{(0, +\infty)} > 0$, for every $n \in \mathbb{N}$. A sequence of functions with the above properties will be called an *Orlicz sequence*.

Let $\mathscr{F} = \{f_n\}$ be an Orlicz sequence. For any sequence of real numbers $\mathbf{x} = \{x_n\}$ put

$$\rho_{\mathscr{F}}(\mathbf{x}) = \sum_{n=1}^{\infty} f_n(|x_n|).$$

Then a Musielak-Orlicz sequence space is defined by

$$\ell_{\mathscr{F}} = \big\{ \mathbf{x} = \big\{ x_n \big\}_{n \in \mathbb{N}} \colon \lim_{\lambda \to 0} \rho_{\mathscr{F}}(\lambda \mathbf{x}) = 0 \big\}.$$

We can equip $\ell_{\mathscr{F}}$ with the Luxemburg norm

$$\|\mathbf{x}\|_{\mathscr{F}} = \inf\{d > 0 : \rho_{\mathscr{F}}(\mathbf{x}/d) \leq 1\}.$$

For basic facts concerning Musielak-Orlicz spaces the reader is reffered to [10].

Now fix any sequence of real numbers $\mathbf{x} = \{x_n\}, m \in \mathbb{N}^* = \mathbb{N} \cup \{0\}, 1 \leq j_1 < \dots < j_{2m+1}, \text{ and put}$

$$\mathbf{x}_{j_1, \dots, j_{2m+1}} = (x_{j_2} - x_{j_1}, \dots, x_{j_{2m}} - x_{j_{2m-1}}, x_{j_{2m+1}}, 0, \dots).$$

Definition 0.1. Let $\mathscr{X}_{\mathscr{F}} = \{ \mathbf{x} = \{ x_n \}_{n \in \mathbb{N}} \in c : ||\mathbf{x}|| < + \infty \}$ where

$$\|\mathbf{x}\| = \sup\{\|\mathbf{x}_{j_1, \dots, j_{2m+1}}\|_{\mathscr{F}} : m \in \mathbb{N}^*, 1 \leq j_1 < \dots < j_{2m+1}\}.$$

Then the space $(\mathscr{X}_{\mathscr{F}}, \|\cdot\|)$ will be called the James space generated by \mathscr{F} .

Put $\mathscr{Y}_{\mathscr{F}} = \mathscr{X}_{\mathscr{F}} \cap c_0$. Note that if for all $n \in \mathbb{N}$ $f_n(t) = t^2$ then $\mathscr{Y}_{\mathscr{F}}$ is exactly the famous James space introducted in [5] and $\mathscr{X}_{\mathscr{F}} = \mathscr{Y}_{\mathscr{F}}^{**}$. For other generalizations of the James space see, e.g., [17].

Let $\mathscr{P}(\mathscr{X}_{\mathscr{F}},\mathscr{Y}_{\mathscr{F}})$ denote the set of all linear projections from $\mathscr{X}_{\mathscr{F}}$ onto $\mathscr{Y}_{\mathscr{F}}$, i.e.,

$$\mathscr{P}(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}) = \{ P \in \mathscr{L}(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}) \colon P/_{\mathscr{Y}_{\mathscr{F}}} = \mathrm{id}_{\mathscr{Y}_{\mathscr{F}}} \}.$$

A projection $P_0 \in \mathcal{P}(\mathcal{X}_{\mathscr{F}}, \mathcal{Y}_{\mathscr{F}})$ is called *minimal* if

$$||P_0|| = \lambda(\mathscr{Y}_{\mathscr{F}}, \mathscr{X}_{\mathscr{F}}) = \inf\{ ||P|| : P \in \mathscr{P}(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}) \}.$$

The constant $\lambda(\mathscr{Y}_{\mathscr{F}}, \mathscr{X}_{\mathscr{F}})$ is called the *relative projection constant*.

Note that the problem of finding a minimal projection, from a Banach space X onto a subspace Y, is strictly related to the Hahn–Banach extension theorem, because we look for an extension of the id: $Y \rightarrow Y$ to X of minimal norm.

For more information concerning minimal projection (existence, effective formulas, uniqueness or estimates of the norm) the reader is referred to [2-4, 6, 8, 11, 12, 14, 16].

Now, take $P_0 \in \mathcal{P}(\mathcal{X}_{\mathscr{F}}, \mathcal{Y}_{\mathscr{F}})$ given by

$$P_0 \mathbf{x} = \mathbf{x} - (\lim_{n \to \infty} x_n) \cdot (1, 1, ...).$$

The aim of this paper is to characterize those James spaces $\mathscr{X}_{\mathscr{F}}$, for which P_0 is the unique minimal projection onto $\mathscr{Y}_{\mathscr{F}}$ (see Theorem 2.5). We also prove that for any Orlicz sequence $\mathscr{F} \parallel P_0 \parallel = 1$ (see Theorem 2.2). This generalizes the results from [13, 9] concerning the case when \mathscr{F} is a constant sequence.

Now we present some results and definitions which will be of use later. Let \mathcal{F} be an Orlicz sequence and let

$$\rho(\mathbf{x}) = \sup \{ \rho_{\mathscr{F}}(\mathbf{x}_{j_1, \dots, j_{2m+1}}) : m \in \mathbb{N}^*, 1 \leqslant j_1 < \dots < j_{2m+1} \}.$$
 (0.1)

We will refer to it as F-modular.

Remark 0.2. Let \mathscr{F} be an Orlicz sequence. Then for arbitrary $\mathbf{x} = \{x_n\}$:

- (1) for every $m \in \mathbb{N}^*$, $1 \le j_1 < \dots < j_{2m+1} \mathbf{x}_{j_1, \dots, j_{2m+1}} \in \ell_{\mathscr{F}}$;
- (2) $\|\mathbf{x}_{j_1, \dots, j_{2m+1}}\| = \min\{M > 0 : \rho_{\mathscr{F}}(\mathbf{x}_{j_1, \dots, j_{2m+1}}/M) \leq 1\}.$

Applying Remark 0.2 we obtain that $\mathscr{X}_{\mathscr{F}}$ is a Banach space, and $\|\cdot\|$ is a norm. Moreover, we have

LEMMA 0.3. For arbitrary $\mathbf{x} \in \mathcal{X}_{\mathscr{F}}$, $\rho(\mathbf{x}) \leq 1$ if and only if $\|\mathbf{x}\| \leq 1$.

Now we present some properties of convex functions, which can be found in [7, Chap. VII] (see also [1, 15]).

In the following theorems J denotes an open (not necessarily bounded) interval.

Theorem 0.4. For function $f: J \to \mathbb{R}$ the following conditions are equivalent:

- (1) function f is convex;
- (2) for any $x_1 < x_2 < x_3$, $(x_3 x_1) f(x_2) \le (x_2 x_1) f(x_3) + (x_3 x_2) f(x_1)$;
- (3) for any $x_1 < x_2 < x_3$, $(f(x_2) f(x_1))/(x_2 x_1) \le (f(x_3) f(x_1))/(x_3 x_1)$;
- (4) for any $x_1 < x_2 < x_3$, $(f(x_3) f(x_1))/(x_3 x_1) \le (f(x_3) f(x_2))/(x_3 x_2)$.

THEOREM 0.5. Let $f: J \to \mathbb{R}$ be a convex function. Then the coresponding function I defined by I(x, h) = (f(x+h) - f(x))/h is increasing with respect to each variable.

COROLLARY 0.6. Let $f: J \to \mathbb{R}$ be a convex function. Then for arbitrary $u \ge v \ge 0$ function g(x) = f(x+u) - f(x+v) is increasing.

Theorem 0.7. Let $f: J \to \mathbb{R}$ be a convex function. Then for every $x \in J$ there exists the right derivative $f'_+(x)$, and the left derivative $f'_-(x)$. Moreover for all $x, y \in J$ x < y:

- (1) $f'_{-}(x) \leq f'_{-}(y)$, $f'_{+}(x) \leq f'_{+}(y)$ and $f'_{-}(x) \leq f'_{+}(x)$;
- (2) $\lim_{t \to x^+} f'_+(t) = \lim_{t \to x^+} f'_-(t) = f'_+(x)$ and $\lim_{t \to x^-} f'_+(t) = \lim_{t \to x^-} f'_-(t) = f'_-(x)$.

Theorem 0.8. Let $f_n: J \to \mathbb{R}$ be a sequence of convex functions, let Δ be a dense subset of J. Suppose that for every $n \in \mathbb{N}$:

- (1) $\sup_{n} f_{n}(x) < +\infty$, for every $x \in \Delta$.
- (2) $\inf_n f_n(x) > -\infty$, for an $x_0 \in J$.

Then for every compact set $E \subset J$ there is M > 0 such that each f_n , restricted to E, satysfies a Lipschitz condition with M.

Theorem 0.9. Let $f_n: J \to \mathbb{R}$ be a sequence of convex functions. If the sequence $\{f_n\}$ converges pointwise on J to a finite function f, then f is convex.

THEOREM 0.10. Let $f_n: J \to \mathbb{R}$ be a sequence of convex functions, and let Δ be a dense subset of J. If the sequence $\{f_n(x)\}$ converges (to a finite limit) for every $x \in \Delta$, then the sequence $\{f_n\}$ converges uniformly on every compact subset of J.

COROLLARY 0.11. Let $f_n: J \to \mathbb{R}$ be a sequence of convex functions. If the sequence $\{f_n\}$ converges in J to a finite function f, then f is convex. Moreover the sequence $\{f_n\}$ converges uniformly to f on every compact subset of J.

Theorem 0.12. Let $f_n: J \to \mathbb{R}$ be a sequence of convex functions. If the sequence $\{f_n\}$ converges pointwise on J to a finite function f, then for arbitrary sequence $\{x_n\} \subset J$, $x_n \to x_0 \in J$

$$\limsup_{n \to \infty} (f_n)'_+(x_n) \leqslant f'_+(x_0).$$

1. TECHNICAL RESULTS

Let $\mathscr{F} = \{f_n\}$ be an Orlicz sequence. To the end of this section, putting $f_n(0) = 0$ for x < 0, we can treat each f_n as a function defined on \mathbb{R} .

Now let us define the following auxiliary functions:

$$\psi = \sup_{n \in \mathbb{N}} f_n, \qquad \psi_n = \sup_{1 \leqslant i \leqslant n} f_i, \qquad \varphi = \lim_{n \to \infty} \sup_{n \to \infty} f_n, \qquad \varphi_n = \sup_{i \geqslant n} f_i.(1.1)$$

DEFINITION 1.1. We will call an Orlicz sequence $\mathscr{F} = \{f_n\}$ a proper Orlicz sequence, if the function ψ is locally bounded at zero. Otherwise, this sequence will be called degenerate.

Lemma 1.2. Let $\mathscr{F} = \{f_n\}$ be a degenerate Orlicz sequence. Then for every x > 0 $\psi(x) = +\infty$.

Proof. Since functions f_n are increasing, ψ is also increasing. Note that ψ is not locally bounded at zero. There is a sequence $\{x_n\} \to 0^+$ such that $\lim_{n \to \infty} \psi(x_n) = +\infty$. Take any x > 0. Since $\psi(x_n) \leqslant \psi(x)$ for n sufficiently large, the lemma is proved.

THEOREM 1.3. Let $\mathcal{F} = \{f_n\}$ be a proper Orlicz sequence. Then there is an interval $I = (-\infty, d_0)$, where $d_0 > 0$, such that:

- (1) ψ and φ are finite and convex on I;
- (2) ψ_n converges uniformly to ψ on every compact contained in I;
- (3) for every $n \in \mathbb{N}$, φ_n is convex;
- (4) φ_n converges uniformly to φ on every compact contained in I.

Proof. Since ψ is bounded on $I = (-\infty, d_0)$ for some $d_0 > 0$, ψ is a finite function on I. Let us define $\phi_{k,n} = \sup_{k \le i \le k+n} f_i$. It is clear that $\psi_n \to \psi$ and $\phi_{k,n} \to \varphi_k$ pointwise on I. Since for each $k \varphi_k \le \psi$, φ_k is a finite function on I. Moreover ψ_n , $\phi_{k,n}$ are convex. Thus by Corollary 0.11, ψ , φ_k are convex on I, and also ψ_n converges uniformly to ψ on every compact contained in I. Since $\varphi \le \psi$, φ is a finite function on I. We also know that $\varphi_k \to \varphi$ pointwise on I, so from the previous considerations it follows that φ_k are convex on I. Thus by Corollary 0.11 function φ is also convex on I, and in addition φ_n converges uniformly to φ on every compact contained in I.

From Theorem 0.8 we immediately get

COROLLARY 1.4. If $\mathcal{F} = \{f_n\}$ is a proper Orlicz sequence, then there exists $\varphi'_+(0)$.

LEMMA 1.5. Let $I = (-\infty, d_0)$, where $d_0 > 0$. Let \mathscr{G} be a sequence of convex functions $g_n \colon I \to \mathbb{R}^+$ such that $g_n(0) = 0$, $g_n/_{(0, d_0)} > 0$. Assume furthermore that $\{g_n\}$ converges pointwise on I to a convex function g. Then for any sequence $\{x_m\} \subset (0, d_0)$, $x_m \to 0$ and for any $\varepsilon > 0$ there exists n_0 such that inequality

$$(g_n)'_+(x_m) - g'_+(x_m) < \varepsilon$$

holds for any $m \in \mathbb{N}$ and $n \ge n_0$.

Proof. Suppose, to the contrary, that for some sequence $x_m \to 0^+$ and for some $\varepsilon > 0$ inequality

$$(g_{n_k})'_+(x_k) - g'_+(x_k) \geqslant \varepsilon$$
 (1.2)

holds for a certain subsequence $n_k \to +\infty$ and $k \in K \subset \mathbb{N}$.

There are two possibilities:

(1°) $\{x_k: k \in K\}$ is an infinite set.

Passing to the subsequence, if neccessary, we may assume that $x_k \to 0$. By Theorem 0.7

$$\lim_{k \to \infty} g'_{+}(x_k) = g'_{+}(0) \tag{1.3}$$

and by Theorem 0.12

$$\lim_{k \to \infty} \sup_{0 \neq 0} (g_{n_k})'_{+}(x_k) \leq g'_{+}(0). \tag{1.4}$$

Hence by (1. 2) we also have $g'_{+}(0) \ge \varepsilon + g'_{+}(0)$, a contradiction.

(2°) $\{x_k: k \in K\}$ is a finite set.

Without loss, we can assume that $(g_{n_k})'_+(x) \ge g'_+(x) + \varepsilon$, for some $x \in [0, d_0)$ which, by Theorem 0.12, leads to a contradiction.

COROLLARY 1.6. Let $\mathscr{F} = \{f_n\}$ be a proper Orlicz sequence, and take $I = (-\infty, d_0)$ from Theorem 1.3. Then for any sequence $\{x_m\} \subset (0, d_0)$, $x_m \to 0$ and for any $\varepsilon > 0$ there exists n_0 such that the inequality

$$(\varphi_n)'_{\perp}(x_m) - \varphi'_{\perp}(x_m) < \varepsilon$$

holds for any $m \in \mathbb{N}$ and $n \ge n_0$. Here φ_n and φ are functions defined by (1.1).

Proof. A sequence $\{\varphi_n\}$ converges pointwise on $\mathbb R$ to a function φ , which by Theorem 1.3 is finite and convex on I. Thus a sequence $\mathscr{G} = \{\varphi_n/_I\}$ fulfills the assumptions of Lemma 1.5.

Lemma 1.7. Let $\mathscr{F} = \{f_n\}$ be a proper Orlicz sequence. Then for any $\varepsilon > 0$ there is $\delta > 0$ such that for arbitrary sequence $\{d_m\} \subset (0, \delta), d_m \to 0$,

$$\varphi_n(d_m) - \varphi(d_m) < \varepsilon d_m$$

holds for any $m \in \mathbb{N}$ and $n \ge n_0$ (here n_0 depends on $\{d_m\}$).

Proof. Fix $\varepsilon > 0$. Take $I = (-\infty, d_0)$. By Theorem 1.3, φ is finite and convex on I. By Theorem 0.7 there is $\delta \in (0, d_0)$ such that for any $x \le \delta$

$$\varphi'_{\perp}(x) - \varphi'_{\perp}(0) < \varepsilon/2. \tag{1.5}$$

Take any sequence $d_m \to 0^+$ contained in $(0, \delta)$. By Corollary 1.6, we get

$$(\varphi_n)'_+(d_m) - \varphi'_+(d_m) < \varepsilon/2 \tag{1.6}$$

for any $n \ge n_0$ and $m \in \mathbb{N}$.

Combining (1.5) and (1.6) we obtain

$$(\varphi_{n})'_{+}(d_{m}) - \varphi'_{+}(0) = [(\varphi_{n})'_{+}(d_{m}) - \varphi'_{+}(d_{m})] - [\varphi'_{+}(d_{m}) - \varphi'_{+}(0)]$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon. \tag{1.7}$$

Hence

$$(\varphi_n)'_+(d_m) < \varepsilon + \varphi'_+(0) \tag{1.8}$$

for any $n \ge n_0$ and $m \in \mathbb{N}$.

By Theorem 1.3 functions φ , φ_n are finite and convex on *I*. Applying Theorem 0.4 and Theorem 0.7 we get

$$\varphi'_{+}(0) \leqslant \frac{\varphi(d_m)}{d_m}, \quad \text{for any} \quad n \in \mathbb{N}$$

and

$$(\varphi_n)'_+(d_m) \geqslant (\varphi_n)'_-(d_m) \geqslant \frac{\varphi_n(d_m)}{d_m}, \quad \text{for any} \quad m, n \in \mathbb{N}.$$

Consequently, by (1.8)

$$\frac{\varphi_{\mathit{n}}(d_{\mathit{m}})}{d_{\mathit{m}}} \! \leqslant \! (\varphi_{\mathit{n}})'_{+}(d_{\mathit{m}}) \! < \! \varepsilon + \varphi'_{+}(0) \! < \! \varepsilon + \frac{\varphi(d_{\mathit{m}})}{d_{\mathit{m}}}$$

for any $n \ge n_0$ and $m \in \mathbb{N}$, which gives the result.

THEOREM 1.8. Let $\mathscr{F} = \{f_n\}$ be a proper Orlicz sequence, such that $\varphi'_+(0) = 0$. Take convex functions $h_1, ..., h_s : \mathbb{R}^+ \to \mathbb{R}^+$ with $h_i(0) = 0$ and $h_i/_{(0, +\infty)} > 0$. Then for any c > 0, b > 0 there is $\delta > 0$ such that for arbitrary $\{d_m\} \subset (0, \delta)$, $d_m \to 0$ there exists n_0 such that

$$h_i(b+c d_m) > h_i(b) + \varphi_n(d_m)$$

for any $i \in \{1, ..., s\}$, $n \ge n_0$ and $m \in \mathbb{N}$.

Proof. By Theorem 0.4 we get

$$h_i(b+cx) - h_i(b) \ge (h_i)'_+(b) \cdot cx$$
, for any $i \in \{1, ..., s\}$, and $x > 0$.

(1.9)

Put $\varepsilon := \min_{i \in \{1, \dots, s\}} \{(h_i)'_+(b) \cdot c\}$. Note that c > 0 and $(h_i)'_+(b) > 0$, for each i. Hence $\varepsilon > 0$. Since $\lim_{x \to 0^+} (\varphi(x)/x) = \varphi'_+(0) = 0$, there is $\delta_1 > 0$ such that

$$\varphi(x) < \frac{\varepsilon}{2} x$$
, for any $x < \delta_1$. (1.10)

For $\varepsilon/2$ choose δ_2 from Lemma 1.7. Put $\delta = \min\{\delta_1, \delta_2\}$.

Now take any sequence $d_m \to 0^+$ contained in $(0, \delta)$. By Lemma 1.7 and (1.10),

$$\varphi_{\mathit{n}}(d_{\mathit{m}}) = \left[\, \varphi_{\mathit{n}}(d_{\mathit{m}}) - \varphi(d_{\mathit{m}}) \, \right] + \varphi(d_{\mathit{m}}) < \frac{\varepsilon}{2} \, d_{\mathit{m}} + \frac{\varepsilon}{2} \, d_{\mathit{m}} = \varepsilon \, d_{\mathit{m}} \qquad (1.11)$$

for any $n \ge n_0$ and $m \in \mathbb{N}$.

By (1.9) and (1.11),

$$h_i(b+c\ d_m)-h_i(b)\geqslant \varepsilon\ d_m>\varphi_n(d_m)$$

for any $i \in \{1, ..., s\}$, $n \ge n_0$ and $m \in \mathbb{N}$.

Theorem 1.9. Let $h: \mathbb{R}^+ \to \mathbb{R}^+$ be a convex function with properties: h(0) = 0 and $h/_{(0, +\infty)} > 0$. Let $g: \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ be a function for which there is $d_0 > 0$ (d_0 can be ∞) such that a function g is finite, convex and $g/_{(d_0, +\infty)} = +\infty$. Assume furthermore that g(0) = 0, $g/_{(0, d_0)} > 0$, $g'_+(0) > 0$ and g is increasing on \mathbb{R} . Then there is $c \in (0, 1)$ such that for any $b \in \mathbb{R}$, $d \in \mathbb{R} \setminus \{0\}$ with h(|b|) < 2, h(|d|) < 2,

$$h(|b+c|d|) < h(|b|) + g(|d|).$$

Proof. Suppose $b \ge 0$, d > 0. Assume $\beta = g'_+(0) > 0$. By Theorem 0.4 and by $\lim_{x \to d_0^+} g(x) \le g(d_0)$,

$$\beta = g'_{+}(0) \leqslant \frac{g(x)}{x}$$
, for every $x \in \mathbb{R}^{+}$. (1.12)

Note that $0 < d < x_0$, $0 < b < x_0$ where x_0 is such that $h(x_0) > 2$. Hence by Theorem 0.8, h fulfills a Lipschitz condition on $[-2x_0, 2x_0]$ with a constant M. Take $c \in (0, 1)$ such that $c < \beta/M$. Then

$$h(b+cd) - h(b) \le M \cdot cd < \beta d \le g(d)$$

for any $b \in [0, x_0), d \in (0, x_0)$.

Note that for any b, d

$$h(|b+c|d|) < h(|b|+c|d|),$$

which completes the proof.

COROLLARY 1.10. Let $\mathscr{F} = \{f_n\}$ be a proper Orlicz sequence, with $\varphi'_+(0) > 0$. Take a convex function $h: \mathbb{R}^+ \to \mathbb{R}^+$ with properties: h(0) = 0 and $h/_{(0, d_0)} > 0$. Then there is $c \in (0, 1)$ such that for any $b \in \mathbb{R}$, $d \in \mathbb{R} \setminus \{0\}$, h(|b|) < 2, h(|d|) < 2 we have

$$h(|b+c|d|) < h(|b|) + \varphi(|d|),$$

where φ is given by (1.1).

Proof. By Theorem 1.3 we can take the greatest number d_0 (or ∞) such that a function $\varphi/_{(-\infty, d_0)}$ is finite and convex. Then φ with d_0 satisfies the assumptions of Theorem 1.9.

LEMMA 1.11. Take $P \in \mathcal{P}(\mathcal{X}_{\mathscr{F}}, \mathcal{Y}_{\mathscr{F}})$ given by $P\mathbf{x} = \mathbf{x} - (\lim_{n \to \infty} x_n) \cdot \mathbf{y}$, for every $\mathbf{x} \in \mathcal{X}_{\mathscr{F}}$, where $\mathbf{y} = \{y_n\}_{n \in \mathbb{N}} \in \mathcal{X}_{\mathscr{F}}$ and $\lim_{n \to \infty} y_n = 1$. Fix $\mathbf{x} \in \mathcal{X}_{\mathscr{F}}$. Then for any $\varepsilon > 0$ there are $1 \leq j_1 < j_2$, M_0 such that for any $M \geqslant M_0$ we can choose $K_0(M)$, j_3 , ..., j_{2M} for which

$$\rho_{\mathscr{F}}((P\mathbf{x})_{j_1,\,\ldots,\,j_{2M},\,k}) > \rho(P\mathbf{x}) - \varepsilon$$

holds for every $k \geqslant K_0(M)$.

Proof. The proof is tedious and uses only the continuity of the functions f_i , thus we omit it.

Remark 1.12. $P \in \mathcal{P}(\mathcal{X}_{\mathscr{F}}, \mathcal{Y}_{\mathscr{F}})$ is a norm-one projection if and only if for arbitrary $\mathbf{x} \in \mathcal{X}_{\mathscr{F}}$ $\rho(\mathbf{x}) \leq 1$ implies $\rho(P\mathbf{x}) \leq 1$.

Lemma 1.13. Let $\mathscr{F} = \{f_n\}$ be a proper Orlicz sequence. Consider the sequence $\mathbf{x} = \{x_n\}$, such that $x_n = x$ for every $n \ge n_0$. Then $\mathbf{x} \in \mathscr{X}_{\mathscr{F}}$.

Proof. The proof is routine, so we omit it.

Remark 1.14. Let $\mathcal{F} = \{f_n\}$ be a proper Orlicz sequence. Then the following conditions are equivalent:

- $(1) \quad P \in \mathscr{P}(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}});$
- (2) P is of the form $P\mathbf{x} = \mathbf{x} (\lim_{n \to \infty} x_n) \cdot \mathbf{y}$, for every $\mathbf{x} \in \mathcal{X}_{\mathscr{F}}$, where $\mathbf{y} = \{y_n\}_{n \in \mathbb{N}} \in \mathcal{X}_{\mathscr{F}}$ and $\lim_{n \to \infty} y_n = 1$.

Proof. For a projection $P \in \mathcal{P}(\mathcal{X}_{\mathscr{F}}, \mathcal{Y}_{\mathscr{F}})$ putting $\mathbf{y} = \mathbf{e} - P(\mathbf{e})$, where $\mathbf{e} = (1, 1, 1, ...)$, we get the result.

2. MAIN RESULTS

If $\mathscr{F} = \{f_n\}$ is a degenerate Orlicz sequence, then by Lemma 1.5 we can easily get the following

Remark 2.1. Let $\mathscr{F} = \{f_n\}$ be a degenerate Orlicz sequence. Then $\mathscr{X}_{\mathscr{F}} = \mathscr{Y}_{\mathscr{F}}$ and consequently $\mathscr{P}(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}) = \{\mathrm{id}\}$. Therefore, we will further deal only with the case when $\mathscr{F} = \{f_n\}$ is a proper Orlicz sequence.

THEOREM 2.2. Let $\mathscr{F} = \{f_n\}$ be a proper Orlicz sequence. Take $P_0 \in \mathscr{P}(\mathscr{X}_\mathscr{Y}, \mathscr{Y}_\mathscr{F})$ given by $P_0 \mathbf{x} = \mathbf{x} - (\lim_{n \to \infty} x_n) \cdot (1, 1, ...)$, for any $\mathbf{x} = \{x_n\} \in \mathscr{X}_\mathscr{F}$. Then $\|P_0\| = 1$ and consequently P_0 is a minimal projection.

Proof. In view of Remark 1.12, it is sufficient to show that for any $\mathbf{x} \in \mathcal{X}_{\mathscr{F}}$ inequality $\rho(\mathbf{x}) \leq 1$ implies $\rho(P_0 \mathbf{x}) \leq 1$.

To do this take any $\mathbf{x} \in \mathcal{X}_{\mathscr{F}}$ such that $\rho(\mathbf{x}) \leq 1$ and $\lim_{n \to \infty} x_n = d \neq 0$. Fix any $\varepsilon > 0$. By Lemma 1.11 there exist $M_0, j_1 < \cdots < j_{2M}, K_0(M_0)$ such that

$$\rho(P_0\mathbf{x}) - \varepsilon < \rho_{\mathscr{F}}((P_0\mathbf{x})_{j_1,\dots,j_{2M_0},k}), \quad \text{for every } k \geqslant K_0(M_0). \quad (2.1)$$

Since $|x_n| \to |d|$ and $|x_n - d| \to 0$, there is $k_1 > K_0$ such that $|x_{k_1}| > |d|/2$ and $|x_{k_1} - d| < |d|/2$. Then

$$f_{M_0+1}(|x_{k_1}|) \ge f_{M_0+1}(|d|/2) \ge f_{M_0+1}(|x_{k_1}-d|).$$
 (2.2)

Since $P_0 \mathbf{x} = \{x_n - d\}_{n \in \mathbb{N}}$, it follows from (2.2) that

$$\rho_{\mathscr{F}}((\mathbf{X})_{j_1,\,\ldots,\,j_{2M_0},\,k_1})\!\geqslant\!\rho_{\mathscr{F}}((P_0\mathbf{X})_{j_1,\,\ldots,\,j_{2M_0},\,k_1}).$$

Consequently, by (2.1) we get

$$\rho_{\mathscr{F}}((\mathbf{X})_{j_1,\,\dots,\,j_{2M_0},\,k_1})\!\geqslant\!\rho_{\mathscr{F}}((P_0\mathbf{X})_{j_1,\,\dots,\,j_{2M_0},\,k_1})\!>\!\rho(P_0\mathbf{X})-\varepsilon.$$

Hence $\rho(P_0\mathbf{x}) \leq \rho(\mathbf{x})$, which completes the proof.

Now let us proceed to the proof of the main result. For this purpose let us make a usefull definition.

DEFINITION 2.3. Let $n_1, n_2, ..., n_{n_0+1}$ be fixed integers, all even or all odd, such that $n_{k+1} > n_k + 6$. For arbitrary numbers b, d, e let us denote by $\mathbf{x}(b, d, e)$ the following sequence

$$\mathbf{x}(b,d,e) = (0,...,0, \gamma b, 0, ..., 0, \gamma e, 0, ..., 0, \gamma e, 0, ..., 0, \gamma e, 0, ..., 0, d, d, d, ...),$$
(2.3)

where $\gamma \in \{-1, 1\}$. By Lemma 1.13, $\mathbf{x}(b, d, e) \in \mathcal{X}_{\mathscr{F}}$.

Now we will prove a crucial lemma.

Lemma 2.4. Let $\mathscr{F} = \{f_n\}$ be a proper Orlicz sequence. Take $\{n_k\}$ the same as in Definition 2.3. Then for any $0 < b_1 < b_2$ there exist e > 0 and $d_1 > 0$ such that for all $b \in [b_1, b_2]$ and $d \leqslant d_1$ we can choose $1 \leqslant l_1 < \cdots < l_{n_0}$ for which

(1) if $\gamma = 1$ then $\rho(\mathbf{x}(b, d, e)) \leq f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{n_0}}(e) + 2\varphi_{n_0}(d)$; moreover, for some $j_1, ..., j_{2m}$ the sequence $\mathbf{x}(b, d, e)_{j_1, ..., j_{2m}}$ has a form

 $\begin{array}{lll} (2) & \mbox{if} & \gamma = -1 & \mbox{then} & \rho(\mathbf{x}(b,d,e)) \leqslant f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{n_0}-1}(e) + \\ f_{l_{n_0}}(e+d) + 2\varphi_{n_0}(d); & \mbox{moreover}, & \mbox{for} & \mbox{some} & j_1, ..., j_{2m} & \mbox{the} & \mbox{sequence} \\ \mathbf{x}(b,d,e)_{j_1,\,...,\,j_{2m}} & \mbox{has a form} \end{array}$

$$(0,...,0,\underbrace{0^*\!-\!\gamma b}_{l_1\text{th coordinate}},0,...,0,\underbrace{0^*\!-\!\gamma e}_{l_2\text{th coordinate}},0,...,\underbrace{0,\underbrace{d-\gamma e}_{n_{0_0+1}},0,n_{0_0}}_{l_{n_0}\text{th coordinate}},0,0,...),$$

(the sequence $\mathbf{x}(b,d,e)_{j_1,\dots,j_{2m}}$ defined above differs from a similar sequence described in (1) only on the coordinate l_{n_0}).

Here the symbol z denotes that z is taken from the kth coordinate of the sequence $\mathbf{x}(b, d, e)$, and $0^* - z$ is a shortened notation for $0^{n+1} - z$.

Proof. Let us denote by Γ the set of all triples $(\gamma_1, \gamma_2, \gamma_1')$ such that $\gamma_1 \in \{0, 1\}, \ \gamma_1' \in \{0, 1\}, \ \gamma_2 = 1$ when $\gamma_1 = 0$, and $\gamma_2 \in \{0, 1\}$ when $\gamma_1 = 1$.

For fixed $(\gamma_1, \gamma_2, \gamma_1') \in \Gamma$ a sequence $l_1, ..., l_{k_0}$ $(k_0 \leqslant n_0)$ will be called $(\gamma_1, \gamma_2, \gamma_1')$ possible if there exist $j_1 < \cdots < j_{2m+1}$ such that

$$\begin{split} \rho_{\mathscr{F}}(\mathbf{x}(b,d,e)_{j_1,\dots,j_{2m+1}}) &= f_{l_1}(\gamma_1 b - \gamma_2 e) + f_{l_2}(e) + \dots + f_{l_{k_0}}(e - \gamma \gamma_1' d) \\ &+ \text{some elements of form } f_k(d), \end{split}$$

where
$$k > l_{k_0}$$
.

Let $\chi_k^{\gamma_1}(d) = \sup_{k < k_1 < k_2} \{ f_{k_1}(d) + f_{k_2}((1 - \gamma_1') d) \}$. By the definition of $\rho(\mathbf{x}(b, d, e))$, it is easy to see that

$$\begin{split} \rho(\mathbf{x}(b,\,d,\,e)) &= \max \big\{ \max \big\{ f_{l_1}(\gamma_1 b - \gamma_2 e) + f_{l_2}(e) + \cdots \\ &+ f_{l_{k_0}}(e - \gamma \gamma_1' d) + \chi_{l_{k_0}}^{\gamma_1'}(d), \text{ where } (\gamma_1,\,\gamma_2,\,\gamma_1') \in \Gamma \\ &\text{and } l_1,\,...,\,l_{k_0} \text{ is a } (\gamma_1,\,\gamma_2,\,\gamma_1') \text{ possible sequence} \big\}, \end{split}$$

$$\max \left\{ f_{l_1}(\gamma_1 b - \gamma \gamma_1' d) + \chi_{l_1}^{\gamma_1'}(d), \text{ where } \gamma_1, \gamma_2, \gamma_1' \in \Gamma \right.$$

$$\text{and } l_1 \leqslant \left\lceil \frac{n_1 + 1}{2} \right\rceil \right\}, \left\{ \chi_0^1(d) \right\} \right\}. \tag{2.4}$$

Since numbers $l_1, ..., l_{k_0}$ appearing in possible sequences can be estimated from above by $[(n_{n_0}+1)/2]$, we can write above max instead of sup.

Now, consider the functions $\check{f}_k = \inf_{n \le \lfloor (k+1)/2 \rfloor} f_n$, $\hat{f}_k = \sup_{n \le \lfloor (k+1)/2 \rfloor} f_n$, $\varphi_n = \sup_{i \ge n} f_i$. (Here the symbol $[\alpha]$ denotes the greatest integer less or equal to α .)

Note that \check{f}_k and \hat{f}_k are convex for each k, moreover $\check{f}_k(0) = \hat{f}_k(0) = 0$. Hence \check{f}_k and \hat{f}_k are also increasing.

Choose d_0 from Theorem 1.3. Then $\psi/_{(-\infty, d_0)}$ is finite and convex.

Now take $e \in \mathbb{R}$ for which

$$0 < e < d_0/2$$
 and $n_0 \psi(e) < \hat{f}_{n_0}(b_1)$. (2.5)

By Theorem 0.8, \hat{f}_i fulfills a Lipschitz condition on $[-(b_2+1), b_2+1]$. Hence, by (2.5), there is d_1 such that for any $d \leq d_1, b \geq b_1$ and any $\gamma_1, \gamma_2, \gamma_1'$:

$$(1) \quad \hat{f}_{n_1}(\gamma_1 b - \gamma \gamma_1' d) + 2\psi(d) < \hat{f}_{n_1}(\gamma_1 b) + \check{f}_{n_{n_0}}(e);$$

(2) for any
$$i \le \left[\frac{n_{n_0} + 1}{2}\right] f_i(e + d) - f_i(e) + 2\psi(d) < \check{f}_{n_{n_0}}(e);$$
 (2.6)

(3)
$$(n_0-1) \psi(e) + \psi(e+d) + 2\psi(d) < \hat{f}_{n_1}(b_1);$$

(4)
$$2\psi(d) < \check{f}_{n_{n_0}}(e)$$
.

We divide our proof into two steps.

Step I. The following equality holds

$$\begin{split} \rho(\mathbf{x}(b,d,e)) &= \max \{ f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{k_0}}(e - \gamma \gamma_1' d) + \chi_{l_{k_0}}^{\gamma_1'}(d), \\ & \text{where } \gamma_1' \in \{0,1\} \text{ and } l_1,...,l_{k_0} \\ & \text{is a } (1,0,\gamma_1') \text{ possible sequence} \}. \end{split}$$

For this purpose let us make some estimates.

(1) For any γ_1 , γ'_1 and $l_1 \leq [(n_{n_0} + 1)/2]$

$$\begin{split} \max \big\{ f_{l_1}(\gamma_1 b - \gamma \gamma_1' d) + \chi_{l_1}^{\gamma_1'}(d), \chi_0^1(d) \big\} & \leqslant \hat{f}_{n_1}(b - \gamma \gamma_1' d) + 2 \psi(d) \\ & < \hat{f}_{n_1}(b) + \check{f}_{n_0}(e) \leqslant f_{l_1'}(b) + f_{l_1' + 1}(e). \end{split}$$

The last equality holds for l_1' such that $\hat{f}_{n_1}(b) = f_{l_1'}(b)$ and $l_1' \leq [(n_{n_0} + 1)/2]$. Note that the sequence l_1' , $l_1' + 1$ is (1, 0, 0) possible.

(2) For any system $(0,1,\gamma_1')$ and $(0,1,\gamma_1')$ possible sequence $l_1,...,l_{k_0}$ we have

$$\begin{split} f_{l_1}(e) + & \cdots + f_{l_{k_0}}(e - \gamma \gamma_1' d) + 2\psi(d) \\ & \leq (k_0 - 1) \, \psi(e) + \psi(e + d) + 2\psi(d) \\ & \leq (n_0 - 1) \, \psi(e) + \psi(e + d) + 2\psi(d) < \hat{f}_{n_1}(b_1) \leq \hat{f}_{n_2}(b) = f_{l_2}(b), \end{split}$$

where $l'_1 \le [(n_1 + 1)/2]$. It is clear that the sequence l'_1 is (1, 0, 0) possible.

(3) For any system $(1,1,\gamma_1')$ and $(1,1,\gamma_1')$ possible sequence $l_1,...,l_{k_0}$ we have

$$\begin{split} f_{l_1}(b-e) + & \cdots + f_{l_{k_0}}(e-\gamma\gamma_1'd) + f_{k_1}(d) + f_{k_2}((1-\gamma_1')\ d) \\ & < f_{l_1}(b) + \cdots + f_{l_{k_0}}(e-\gamma\gamma_1'd) + f_{k_1}(d) + f_{k_2}((1-\gamma_1')\ d) \end{split}$$

for any $k_2 > k_1 > l_{k_0}$.

Let $\rho_{\mathscr{F}}(\mathbf{x}(b,d,e)_{j_1,\dots,j_{2m+1}})$ has the form of the left side above inequality. Assume furthermore that e appearing in the factor $f_{l_1}(b-e)$ is taken from the n_j th coordinate in the sequence $\mathbf{x}(b,d,e)$. Between the n_1 th coordinate and the n_j th coordinate in the sequence $\mathbf{x}(b,d,e)$ there is at least one zero. Taking this zero and putting it in place of earlier mentioned e in the sequence $\mathbf{x}(b,d,e)_{j_1,\dots,j_{2m+1}}$ we get a sequence which \mathscr{F} -modular (see (0.1)) is equal to the right side above inequality. Thus sequence l_1,\dots,l_{k_0} is $(1,0,\gamma_1')$ possible.

Step II. If $l_1 < \cdots < l_{k_0}$ is a $(1,0,\gamma_1')$ possible sequence, then there are $l_2',...,l_{n_0}',\ l_1 < l_2' < \cdots < l_{n_0}'$ and $\{l_1,l_2,...,l_{k_0}\} \subset \{l_1,l_2',...,l_{n_0}'\}$. Moreover, the sequence $l_1,l_2',...,l_{n_0}'$ is, for any $\gamma_1'' \in \{0,1\},\ (1,0,\gamma_1'')$ possible, also there are $j_1,...,j_{2m}$ such that $\mathbf{x}(b,d,e)_{j_1,...,j_{2m}}$ has a form

$$(0,...,0,0\underbrace{*-\gamma b}_{l_1 \text{th coordinate}},0,...,0,0\underbrace{*-\gamma e}_{l_2' \text{th coordinate}},...,\underbrace{0*-\gamma e}_{l_{n_0-1} \text{th coordinate}},0,...,0,$$

$$\underbrace{\mathbf{x}(b,d,e)_k - \gamma e}_{l'_{n_0} \text{th coordinate}}, 0, \dots)$$

for any $k > n_0$.

To do this, take a $(1,0,\gamma_1')$ possible sequence $l_1,...,l_{k_0}$. Then there exist $j_1,...,j_{2m+1}$ such that $\rho_{\mathscr{F}}(\mathbf{x}(b,d,e)_{j_1,...,j_{2m+1}})=f_{l_1}(b)+f_{l_2}(e)+\cdots+f_{l_{k_0}}(e-\gamma\gamma_1'd)$. If in the sequence $\mathbf{x}(b,d,e)_{j_1,...,j_{2m+1}}$, e (or b) which appears on

the l_i th (resp. l_{i+1} th) coordinate is taken from the n_p th (resp. n_q th) coordinate of the sequence $\mathbf{x}(b,d,e)$, then $l_{i+1}-l_i \leq (n_q-n_p)/2-1$.

Consider a sequence $\mathbf{x}(b,d,e)_{1,2,\dots,2[(n_1-1)/2],n_1,\dots,n_{n_0},k}$, where after n_1 there are all numbers in succession up to n_0 . In this sequence between the terms of forms $0^*-\gamma e$ (or $0^*-\gamma b$) and $0^*-\gamma e$ there are exactly $(n_q-n_p)/2-1$ coordinates (having a form 0-0 or $0-\gamma e$). Thus by removing a proper number of systems having a form 0-0 or $0-\gamma e$ we get a sequence $\mathbf{x}(b,d,e)_{j_1',\dots,j_{2m_1}'}$, which has on the l_i th coordinate (i>1) term $0^*-\gamma e$, and on the l_1 th term $0^*-\gamma b$.

Assume that this sequence (i.e., $\mathbf{x}(b,d,e)_{j_1',\dots,j_{2m_1}'}$) has t coordinates of forms $0*-\gamma b$ or $0*-\gamma e$, and designate them successively by s_1,\dots,s_t (obviously $l_1=s_1$ and $\{l_2,\dots,l_{k_0}\}\subset\{s_1,\dots,s_t\}$).

Fix coordinates s_i and s_{i+1} ($i \in \{1, ..., t-1\}$), assume that a non-zero term (i.e., γb or γe) on the s_i th (resp. s_{i+1} th) coordinate in the sequence $\mathbf{x}(b,d,e)_{j'_1, ..., j'_{2m_1}}$ is taken from the n_p th (resp. n_q th) coordinate of the sequence $\mathbf{x}(b,d,e)$.

There exists $u \in \{p+1, ..., q\}$ such that

$$\frac{n_{u-1} - n_p}{2} < s_{i+1} - s_i \le \frac{n_u - n_p}{2}. (2.7)$$

If $j'_{2\alpha+1} = n_p$ and $j'_{2\beta+1} = n_q$, then considering the sequence

$$\mathbf{x}(b,d,e)_{j'_{1},\ldots,j'_{2\alpha},n_{p},\ldots,n_{u+1},j'_{2\beta+3},\ldots,j'_{2m_{1}}},$$
(2.8)

where after n_p appear successively all numbers up to n_{u+1} , we can see that in this sequence between coordinates in which there appear terms $0^* - \gamma_p^{n_p}$ (or $0^* - \gamma_p^{n_p}$) and $0^* - \gamma_p^{n_u}$ there are $(n_u - n_p)/2 - 1$ coordinates, of which u - p - 1 have a form $0^* - \gamma_p$. Since $(n_{u-1} - n_p)/2 \ge u - p - 1$ and (2.7) holds true, then by removing a proper numbers of systems of the form 0 - 0 from the sequence (2.8) we will get the sequence j_1^m , ..., $j_{2m_1}^m$ such that $\mathbf{x}(b,d,e)_{j_1^n,\ldots,j_{2m_1}^n}$ is equal to $\mathbf{x}(b,d,e)_{j_1^n,\ldots,j_{2m_1}^n}$ on coordinates from 1 to s_i and from the coordinate s_{i+1} up. Moreover, in this sequence on coordinates from $s_i + 1$ to $s_{i+1} - 1$ there appear all terms of the form $0^* - \gamma_p^n$ for all $j \in \{p+1,\ldots,u-1\}$, and on the coordinate s_{i+1} there is a term $0^* - \gamma_p^n$.

Now applying this procedure to a sequence $\mathbf{x}(b,d,e)_{j'_1,\ldots,j'_{2m_1}}$ and coordinates s_1,s_2 , we get a new sequence and applying to it the same procedure to coordinates s_2,s_3 , we get the next sequence, and so on. Finally, we get a sequence $\mathbf{x}(b,d,e)_{j''_1,\ldots,j''_{2m_1}}$, which has t_1 coordinates of the form $0^*-\gamma e$ or $0^*-\gamma b$. Let these are the places $r_1 < r_2 < \cdots < r_{t_1}$ then $l_1 = s_1 = r_1$ and $\{l_2,\ldots,l_{k_0}\} \subset \{s_2,\ldots,s_t\} \subset \{r_2,\ldots,r_{t_1}\}$. Moreover on the coordinate r_1 there is

a term $0^*-\gamma b$ and on the coordinate r_i (for $i=2,...,t_1$) $0^*-\gamma e$. Now by completing a sequence $j_1'',...,j_{2m_1}''$ to a sequence $j_1'',...,j_{2m_1}'',n_{t_1+1},n_{t_1+1}+1$, ..., $n_{n_0-1},n_{n_0-1}+1,n_{n_0},k$, where after the term j_{2m_1}'' there appear successively all pair of terms from $n_{t_1+1},n_{t_1+1}+1$ to $n_{n_0-1},n_{n_0-1}+1$, we will get a sequence which has the properties required in Step II.

Now let us come back to the proof of lemma.

First we consider the case $\gamma = 1$.

Let $l_1, l_2, ..., l_{k_0}$ $(k_0 < n_0)$ be any $(1, 0, \gamma_1')$ possible sequence. Choose for it a sequence $l_1, l_2', ..., l_{n_0}'$ from Step II and assume that $l_{i_0}' \notin \{l_1, l_2, ..., l_{k_0}\}$. Then

$$\begin{split} f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{k_0}}(e - \gamma_1' d) + \chi_{l_{k_0}}^{\gamma_1}(d) \\ & \leqslant f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{k_0}}(e) + 2\psi(d) \\ & < f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{k_0}}(e) + f_{l_{l_0}'}(e) \\ & \leqslant f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{l_{n_0}}}(e). \end{split}$$

Thus by Step I and properties of $\{l_1, l_2', ..., l_{n_0}'\}$ we get

$$\begin{split} \rho(\mathbf{x}(b,d,e)) &= \max \big\{ f_{l_1}(b) + f_{l_2}(e) + \dots + f_{l_{k_0}}(e - \gamma_1'd) + \chi_{l_{k_0}}^{\gamma_1'}(d), \\ & \text{where } \gamma_1' \in \big\{0,1\big\} \text{ and } l_1, \dots, l_{k_0} \\ & \text{is a } (1,0,\gamma_1') \text{ possible sequence} \big\} \\ &= \max \big\{ f_{l_1}(b) + f_{l_2}(e) + \dots + f_{l_{n_0}}(e) + \chi_{l_{n_0}}^0(d), \\ & \text{where } l_1, \dots, l_{n_0} \text{ is a } (1,0,0) \text{ possible sequence} \\ & \text{having properties required in Step II} \big\} \\ &= (\text{for a certain } (1,0,0) \text{ possible sequence } l_1^1, \dots, l_{n_0}^1 \\ & \text{having properties required in Step II}) \\ &= f_{l_1^1}(b) + f_{l_2^1}(e) + \dots + f_{l_{n_0}^1}(e) + \chi_{l_{n_0}^0}^0(d), \\ &\leqslant f_{l_1^1}(b) + f_{l_2^1}(e) + \dots + f_{l_{n_0}^1}(e) + 2\psi_{n_0}(d). \end{split}$$

Hence the lemma is proved in this case.

Now, consider the second case, i.e., $\gamma = -1$.

Let $l_1, l_2, ..., l_{k_0}$ $(k_0 < n_0)$ be any $(1, 0, \gamma_1')$ possible sequence. Choose for it a sequence $l_1, l_2', ..., l_{n_0}'$ from Step II and assume that $l_{i_0}' \notin \{l_1, l_2, ..., l_{k_0}\}$. Then

$$\begin{split} f_{l_1}(b) + f_{l_2}(e) + & \cdots + f_{l_{k_0}}(e + \gamma_1'd) + \chi_{l_{k_0}}^{\gamma_1'}(d) \\ & \leqslant f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{k_0}}(e + \gamma_1'd) + 2\psi(d) \\ & < f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{k_0}}(e) + f_{l_{l_0}'}(e) \\ & \leqslant f_{l_1}(b) + f_{l_2'}(e) + \cdots + f_{l_{n_0}}(e + d). \end{split}$$

Thus by Step I and properties of $\{l_1, l'_2, ..., l'_{n_0}\}$ we get

$$\begin{split} \rho(\mathbf{x}(b,d,e)) &= \max \big\{ f_{l_1}(b) + f_{l_2}(e) + \dots + f_{l_{k_0}}(e + \gamma_1'd) + \chi_{l_{k_0}}^{\gamma_1'}(d), \\ & \text{where } \gamma_1' \in \big\{ 0, 1 \big\} \text{ and } l_1, \dots, l_{k_0} \\ & \text{is a } (1,0,\gamma_1') \text{ possible sequence} \big\} \\ &= \max \big\{ f_{l_1}(b) + f_{l_2}(e) + \dots + f_{l_{n_0}}(e+d) + \chi_{l_{n_0}}^0(d), \\ & \text{where } l_1, \dots, l_{n_0} \text{ is a } (1,0,1) \text{ possible sequence} \\ & \text{having properties required in Step II} \big\} \\ &= (\text{for a certain } (1,0,1) \text{ possible sequence } l_1^1, \dots, l_{n_0}^1 \\ & \text{having properties required in Step II}) \\ &= f_{l_1^1}(b) + f_{l_2^1}(e) + \dots + f_{l_{n_0}^1}(e+d) + \chi_{l_{n_0}}^0(d) \\ &\leqslant f_{l_1^1}(b) + f_{l_2^1}(e) + \dots + f_{l_{n_0}^1}(e+d) + 2\psi_{n_0}(d). \end{split}$$

Hence the lemma is proved in this case, too.

Now we are able to prove the following

Theorem 2.5. Let $\mathscr{F} = \{f_n\}$ be a proper Orlicz sequence. Take the "natural projection" $P_0 \in \mathscr{P}(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}})$ defined in Theorem 2.2. Then P_0 is the unique minimal projection in $\mathscr{P}(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}})$ if and only if $\varphi'_+(0) = 0$, where $\varphi = \limsup_{n \to \infty} f_n$.

Proof. By Theorem 2.2, P_0 is a minimal projection in $\mathscr{P}(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}})$ Suppose $\varphi'_+(0) = 0$ and take any $P \in \mathscr{P}(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}})$. By Remark 1.14 there is $\mathbf{y} = \{y_n\} \in \mathscr{X}_{\mathscr{F}}, \lim_{n \to \infty} y_n = 1$ such that

$$P\mathbf{x} = \mathbf{x} - (\lim_{n \to \infty} x_n) \cdot \mathbf{y}, \quad \text{for any} \quad \mathbf{x} = \{x_n\} \in \mathcal{X}_{\mathscr{F}}.$$

Now asume that $P \neq P_0$. There are two possible cases:

(1) There is a subsequence $\{y_{n_k}\}$ of the sequence $\{y_n\}$ with properties:

For any $k \in \mathbb{N}$ $y_{n_k} \geqslant y_{n_k+1}$ and $y_{n_k} \geqslant y_{n_{k+1}}$, moreover $y_{n_1} > y_{n_1+1}$.

Numbers $\{n_k\}$, $k \in \mathbb{N}$ are all even or all odd, and for any $k \in \mathbb{N}$ $n_{k+1} > n_k + 6$.

(2) There is a subsequence $\{y_n\}$ of the sequence $\{y_n\}$ with properties:

For any $k \in \mathbb{N}$ $y_{n_k} \leq y_{n_k+1}$ and $y_{n_k} \leq y_{n_{k+1}}$, moreover $y_{n_1} < y_{n_1+1}$.

Numbers $\{n_k\}$, $k \in \mathbb{N}$ are all even or all odd, and for any $k \in \mathbb{N}$ $n_{k+1} > n_k + 6$.

Put $c = |y_{n_1+1} - y_{n_1}| > 0$ and $\gamma = \operatorname{sgn}(y_{n_1+1} - y_{n_1})$.

Consider functions $f_k = \inf_{n \le \lfloor (k+1)/2 \rfloor} f_n$, $\hat{f}_k = \sup_{n \le \lfloor (k+1)/2 \rfloor} f_n$, $\varphi_n = \sup_{i \ge n} f_i$. (Here the symbol $[\alpha]$ denotes the greatest integer less or equal to α .)

Note that \check{f}_k and \hat{f}_k are convex for each k, moreover $\check{f}_k(0) = \hat{f}_k(0) = 0$. Also $\lim_{x \to \infty} \check{f}_k(x) = \lim_{x \to \infty} \hat{f}_k(x) = +\infty$. Therefore there are $b_1, b_2, 0 < b_1 < b_2$ such that

$$\frac{1}{4} < \hat{f}_{n_1}(b_1) < \frac{1}{2} < 1 < \check{f}_{n_1}(b_2).$$
 (2.9)

Choose d_0 from Theorem 1.3. Then $\psi/_{(-\infty, d_0)}$ is finite and convex.

For numbers c>0, $b_1>0$ and functions f_1 , ..., $f_{\lfloor (n_1+1)/2\rfloor}$ take $\delta>0$ from Theorem 1.8. Take any sequence $d_v\to 0^+, d_v\leqslant \min\{\delta,d_0/2\}$. By Theorem 1.8 there is n_0 such that

$$f_i(b_1 + cd_v) > f_i(b_1) + 2\varphi_{n_0}(d_v)$$

for any $i \in \{1, ..., [(n_1 + 1)/2]\}$, and $v \in \mathbb{N}$.

By Corollary 0.6, a function $h_i(x) = f_i(x+cd) - f_i(x)$ is increasing, for fixed c,d,i, thus for $b \geqslant b_1$ we have $f_i(b+cd) - f_i(b) \geqslant f_i(b_1+cd) - f_i(b_1) > 2\varphi_{n_0}(d)$. Hence we get

$$f_i(b + cd_v) > f_i(b) + 2\varphi_{n_0}(d_v)$$
 (2.10)

for any $i \in \{1, ..., [(n_1+1)/2]\}, v \in \mathbb{N}$, and $b \in [b_1, b_2]$.

For $b_1 < b_2$ choose e, d_1 from Lemma 2.4. Since $d_v \to 0$ there is $d_{v_0} \le d_1$. For any $b \in [b_1, b_2]$ consider the sequence $\mathbf{x}(b) = \mathbf{x}(b, d_{v_0}, e)$ (see Definition 2.2)

tion 2.3). Let us remind that b, e, d_{ν_0} fulfill (2.5) and (2.6) (see the proof of Lemma 2.4).

By the formulas on P and $\mathbf{x}(b)$ we get

$$\begin{split} P\mathbf{x}(b) = & (-d_{v_0}y_1, \, ..., \, -d_{v_0}y_{n_1-1}, \underbrace{\gamma b - y_{n_1} \, d_{v_0}}_{n_1}, \, \underbrace{-y_{n_1+1} \, d_{v_0}}_{n_1+1}, \, ..., \underbrace{\gamma e - y_{n_2} \, d_{v_0}}_{n_2}, \\ & \underbrace{-y_{n_2+1} \, d_{v_0}}_{n_2+1}, \, ..., \underbrace{\gamma e - y_{n_{n_0}} \, d_{v_0}}_{n_{n_0}}, \, \underbrace{-y_{n_{n_0}+1} \, d_{v_0}}_{n_{n_0}+1}, \, ..., \underbrace{(1-y_{n_{n_0+1}}) \, d_{v_0}}_{n_{n_0+1}}, \, ...). \end{split}$$

Now we are going to show that (in both cases (1) and (2))

$$\rho(P\mathbf{x}(b)) > \rho(\mathbf{x}(b)), \quad \text{for every} \quad b \in [b_1, b_2].$$
 (2.11)

Consider the case (1), then $\gamma = -1$.

Take l_1 , ..., l_{n_0} and j_1 , ..., j_{2m} from Lemma 2.4, point (2). Modifying v_0 , if necessary, by (2.10) and Lemma 2.4 we have

$$\begin{split} \rho(P\mathbf{x}(b)) \geqslant & \rho((P\mathbf{x}(b))_{j_1, \dots, j_{2m}}) \\ \geqslant & f_{l_1}(|-y_{n_1+1} \, d_{v_0} + b + y_{n_1} \, d_{v_0}|) \\ & + f_{l_2}(|-y_{n_2+1} \, d_{v_0} + e + y_{n_2} \, d_{v_0}|) + \cdots \\ & + f_{l_{n_0-1}}(|-y_{n_{n_0-1}+1} \, d_{v_0} + e + y_{n_{n_0-1}} \, d_{v_0}|) \\ & + f_{l_{n_0}}(|(1-y_{n_{n_0+1}}) \, d_{v_0} + e + y_{n_{n_0}} \, d_{v_0}|) \\ = & f_{l_1}(b + (\underbrace{y_{n_1} - y_{n_1+1}) \, d_{v_0}}) + f_{l_2}(e + (\underbrace{y_{n_2} - y_{n_2+1}) \, d_{v_0}}) + \cdots \\ & = c \\ & + f_{l_{n_0-1}}(e + (\underbrace{y_{n_{n_0-1}} - y_{n_{n_0-1}+1}) \, d_{v_0}}) \\ & + f_{l_{n_0}}(e + d_{v_0} + (\underbrace{y_{n_{n_0}} - y_{n_{n_0+1}}) \, d_{v_0}}) \\ \geqslant & f_{l_1}(b + c d_{v_0}) + f_{l_2}(e) + \cdots + f_{l_{n_0-1}}(e) + f_{l_{n_0}}(e + d_{v_0}) \\ & > f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{n_0-1}}(e) + f_{l_{n_0}}(e + d_{v_0}) + 2\varphi_{n_0}(d_{v_0}) \\ \geqslant & \rho(\mathbf{x}(b)). \end{split}$$

Now consider the case (2), then $\gamma = 1$.

Take l_1 , ..., l_{n_0} and j_1 , ..., j_{2m} from Lemma 2.4, point (1). Modifying v_0 , if necessary, by (2.10) and Lemma 2.4 we have

$$\begin{split} \rho(P\mathbf{x}(b)) \geqslant & \rho((P\mathbf{x}(b))_{j_1, \, \dots, \, j_{2m}}) \\ \geqslant & f_{l_1}(|-y_{n_1+1} \, d_{v_0} - b + y_{n_1} \, d_{v_0}|) \\ & + f_{l_2}(|-y_{n_2+1} \, d_{v_0} - e + y_{n_2} \, d_{v_0}|) + \cdots \\ & + f_{l_{n_0}}(|-y_{n_{n_0}+1} \, d_{v_0} - e + y_{n_{n_0}} \, d_{v_0}|) \\ = & f_{l_1}(b + (\underbrace{y_{n_1+1} - y_{n_1})}_{=c} \, d_{v_0}) + f_{l_2}(e + (\underbrace{y_{n_2+1} - y_{n_2})}_{\geqslant 0} \, d_{v_0}) + \cdots \\ & + f_{l_{n_0}}(e + (\underbrace{y_{n_{n_0}+1} - y_{n_{n_0}}}_{\geqslant 0} \, d_{v_0}) \\ \geqslant & f_{l_1}(b + c d_{v_0}) + f_{l_2}(e) + \cdots + f_{l_{n_0}}(e) \\ \geqslant & f_{l_1}(b) + f_{l_2}(e) + \cdots + f_{l_{n_0}}(e) + 2\varphi_{n_0}(d_{v_0}) \geqslant \rho(\mathbf{x}(b)). \end{split}$$

Now, consider a function $t: b \mapsto \rho(\mathbf{x}(b))$. It can be easily seen that for a fixed d_{v_0} and e this function is continuous. And since, by Lemma 2.4, (2.6), and (2.9)

$$\begin{split} t(b_1) &= \rho(\mathbf{x}(b_1)) \leqslant \hat{f}_{n_1}(b_1) + (n_0 - 1) \ \psi(e) + \psi(e + d_{\nu_0}) + 2 \psi(d_{\nu_0}) \\ &< 2 \hat{f}_{n_1}(b_1) < 1, \\ t(b_2) &= \rho(\mathbf{x}(b_2)) \geqslant \hat{f}_{n_0}(b_2) > 1, \end{split}$$

therefore there is $b_0 \in (b_1, b_2)$ such that

$$1 = t(b_0) = \rho(\mathbf{x}(b_0)).$$

Thus for this b_0 , by (2.11), we have

$$\rho(P\mathbf{x}(b_0)) > \rho(\mathbf{x}(b_0)) = 1.$$

Hence, by Remark 1.12, ||P|| > 1, and consequently P_0 is the only minimal projection and has norm equal to 1.

To prove the converse suppose $\varphi'_{+}(0) > 0$ (by Corollary 1.4 $\varphi'_{+}(0)$ exists). Take $c \in (0, 1)$ from Corollary 1.10 for a function $h = f_1$. Put

$$\mathbf{y}_0 = (1 - c, 1, 1, ...),$$
 (2.12)

and let

$$P: \mathscr{X}_{\mathscr{F}} \ni \mathbf{x} \mapsto \mathbf{x} - (\lim_{n \to \infty} x_n) \cdot \mathbf{y}_0 \in \mathscr{Y}_{\mathscr{F}}. \tag{2.13}$$

By Remark 1.14, $P \in \mathcal{P}(\mathcal{X}_{\mathscr{F}}, \mathcal{Y}_{\mathscr{F}})$. Obviously $P \neq P_0$, since $\mathbf{y}_0 \neq (1, 1, 1, ...)$ and there is $\mathbf{x} \in \mathcal{X}_{\mathscr{F}} \setminus \mathcal{Y}_{\mathscr{F}}$.

Take any $\mathbf{x} = \{x_n\} \in \mathcal{X}_{\mathscr{F}}, \ \rho(\mathbf{x}) \leq 1 \text{ and denote } d = \lim_{n \to \infty} x_n$. We show that

$$\rho(P\mathbf{x}) \leqslant \rho(\mathbf{x}).$$

Without loss, we can assume that $d \neq 0$.

Fix any $\varepsilon > 0$. By Lemma 1.11, we can take $1 \le j_1 < j_2$, M_0 such that for any $M \ge M_0$ we can choose $K_0(M)$, j_3 , ..., j_{2M} such that

$$\rho_{\mathscr{F}}((P\mathbf{x})_{j_1, \dots, j_{2M}, k}) > \rho(P\mathbf{x}) - \varepsilon \tag{2.14}$$

for every $k \geqslant K_0(M)$.

If $j_1 \neq 1$, then by (2.14) we obtain

$$\rho(\mathbf{x}) \! \geqslant \! \rho_{\mathscr{F}}(\mathbf{x}_{j_1, \, \dots, \, j_{2M_0}, \, K_0(M_0)}) \! = \! \rho_{\mathscr{F}}((P\mathbf{x})_{j_1, \, \dots, \, j_{2M_0}, \, K_0(M_0)}) \! > \! \rho(P\mathbf{x}) - \varepsilon,$$

that is,

$$\rho(\mathbf{x}) > \rho(P\mathbf{x}) - \varepsilon$$
.

Now assume that $j_1 = 1$. It will be shown that there exist $M_1 \ge M_0$, $K_1 \ge K_0(M_1)$ such that

$$f_1(|x_{j_2}-x_1|) + f_{M_1+1}(|x_{K_1}|) \ge f_1(|x_{j_2}-x_1+cd|) + f_{M_1+1}(|x_{K_1}-d|),$$
(2.15)

where j_2 , M_0 , M_1 , $K_0(M_1)$ are chosen from (2.14).

If not, then for any $M \geqslant M_0$, $K \geqslant K_0(M)$ $f_1(|x_{j_2} - x_1|) + f_{M+1}(|x_K|) < f_1(|x_{j_2} - x_1 + cd|) + f_{M+1}(|x_K - d|)$. Since $x_K \to d$, we get

$$f_1(|x_{j_2} - x_1|) + f_{M+1}(|d|) \leqslant f_1(|x_{j_2} - x_1 + cd|)$$

for any $M \ge M_0$.

But by the definition of φ there exists a sequence $\{M_l\}$ such that $f_{M_l}(|d|) \to \varphi(|d|), l \to \infty$. Hence

$$f_1(|x_{i_2}-x_1|)+f_{M_1}(|d|) \leq f_1(|x_{i_2}-x_1+cd|)$$

for any $l \in \mathbb{N}$. Passing with l to infinity, we get

$$f_1(|x_{j_2} - x_1|) + \varphi(|d|) \le f_1(|x_{j_2} - x_1 + cd|).$$
 (2.16)

By (2.16), $\varphi(|d|) < +\infty$. Since $f_1(|x_{j_2} - x_1|) < 2$ and $f_1(|d|) < 2$ (it follows from $\rho(\mathbf{x}) \le 1$), by Corollary 1.10 we get

$$f_1(|x_{j_2} - x_1 + cd|) < f_1(|x_{j_2} - x_1|) + \varphi(|d|),$$
 (2.17)

a contradiction with (2.16).

Now, for M_1 choose numbers j_3 , ..., j_{2m+1} from (2.14). Note that, by (2.13), (2.15) is equivalent to

$$\rho_{\mathscr{F}}(\mathbf{x}_{j_1,\,\dots,\,j_{2M_1},\,K_1})\!\geqslant\!\rho_{\mathscr{F}}((P\,\mathbf{x})_{j_1,\,\dots,\,j_{2M_1},\,K_1}).$$

By (2.14),

$$\rho(\mathbf{x}) \geqslant \rho_{\mathscr{F}}(\mathbf{x}_{j_1,\,\ldots,\,j_{2M_1},\,K_1}) \geqslant \rho_{\mathscr{F}}((P\,\mathbf{x})_{j_1,\,\ldots,\,j_{2M_1},\,K_1}) > \rho(P\,\mathbf{x}) - \varepsilon.$$

Thus in both cases we have proved that $\rho(\mathbf{x}) > \rho(P\mathbf{x}) - \varepsilon$, for any $\varepsilon > 0$. By Remark 1.12, ||P|| = 1, and consequently P is a minimal projection different from P_0 .

ACKNOWLEDGMENT

The author expresses his gratitude to Dr. Grzegorz Lewicki for many fruitful discussions concerning the subject of this paper.

REFERENCES

- 1. F. Beckenbach and R. Bellman, "Inequalities," Springer-Verlag, New York/Berlin, 1961.
- B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in L¹, Trans. Amer. Math. Soc. 329 (1992), 289-305.
- 3. E. W. Cheney and P. D. Morris, On the existence and characterization of minimal projections, *J. Reine Angew. Math.* **270** (1974), 61–76.
- C. Franchetti, Projections onto hyperplanes in Banach spaces, J. Approx. Theory 38 (1983), 319–333.
- 5. R. C. James, Bases and reflexivity of Banach spaces, Ann. Math. 52 (1950), 518-527.
- H. Koenig and N. Tomczak-Jaegermann, Norms of minimal projections, J. Funct. Anal. 119 (1994), 253–280.
- M. Kuczma, "An Introduction to the Theory of Functional Equations and Inequalities," PWN, Warsaw, 1985.
- 8. G. Lewicki, Minimal projections onto two dimensional subspaces of $\ell_{\infty}^{(4)}$, J. Approx. Theory **88** (1997), 92–108.
- G. Lewicki, On the uniqueness of the minimal projections in spaces of the James Type, Funct. Approx. 25 (1997), 59–65.
- J. Musielak, "Orlicz Spaces and Modular Spaces," Lecture Notes in Math., Springer-Verlag, New York/Berlin, 1988.
- W. Odyniec, Codimension one minimal projections in Banach spaces and a mathematical programming problem, *Dissertationes Math.* 254 (1986).
- W. Odyniec and G. Lewicki, "Minimal Projections in Banach Spaces," Lecture Notes in Math., Springer-Verlag, Berlin, 1990.
- W. Odyniec and M. Yakubson, "Projections and Bases of Normed Spaces," Obrazowanie, S. Petersburg, 1988. [In Russian]
- 14. M. Prophet, Codimension one minimal projections onto the quadratics, *J. Approx. Theory* **85** (1996), 27–42.
- 15. R. T. Rockafellar, "Convex Analysis," Princeton Univ. Press, Princeton, NJ, 1972.
- S. Rolewicz, On projections on subspaces of codimension one, Studia Math. 44 (1990), 17–19.
- 17. A. Sersouri, On James' type spaces, Trans. Amer. Math. Soc. 310, No. 2 (1988), 715-745.