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0. INTRODUCTION

Let F=[ fn]n # N , be a sequence of convex functions fn : R+ � R+ such
that fn(0)=0 and fn �(0, +�)>0, for every n # N. A sequence of functions
with the above properties will be called an Orlicz sequence.

Let F=[ fn] be an Orlicz sequence. For any sequence of real numbers
x=[xn] put

\F (x)= :
�

n=1

fn( |xn | ).

Then a Musielak�Orlicz sequence space is defined by

lF =[x=[xn]n # N : lim
* � 0

\F (*x)=0].

We can equip lF with the Luxemburg norm

&x&F =inf[d>0: \F (x�d)�1].

For basic facts concerning Musielak�Orlicz spaces the reader is reffered
to [10].

Now fix any sequence of real numbers x=[xn], m # N*=N _ [0],
1� j1< } } } < j2m+1 , and put

xj1, ..., j2m+1
=(x j2

&xj1
, ..., x j2m

&x j2m&1
, x j2m+1

, 0, ...).
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Definition 0.1. Let XF =[x=[xn]n # N # c : &x&<+�] where

&x&=sup[&xj1, ..., j2m+1
&F : m # N*, 1� j1< } } } < j2m+1].

Then the space (XF , & }&) will be called the James space generated by F.

Put YF =XF & c0 . Note that if for all n # N fn(t)=t2 then YF is exactly
the famous James space introducted in [5] and XF =YF**. For other
generalizations of the James space see, e.g., [17].

Let P(XF , YF ) denote the set of all linear projections from XF onto
YF , i.e.,

P(XF , YF )=[P # L(XF , YF ) : P�YF
=idYF

].

A projection P0 # P(XF , YF ) is called minimal if

&P0&=*(YF , XF )=inf[&P& : P # P(XF , YF )].

The constant *(YF , XF ) is called the relative projection constant.
Note that the problem of finding a minimal projection, from a Banach

space X onto a subspace Y, is strictly related to the Hahn�Banach exten-
sion theorem, because we look for an extension of the id: Y � Y to X of
minimal norm.

For more information concerning minimal projection (existence, effective
formulas, uniqueness or estimates of the norm) the reader is referred to
[2�4, 6, 8, 11, 12, 14, 16].

Now, take P0 # P(XF , YF ) given by

P0x=x&( lim
n � �

xn) } (1, 1, ...).

The aim of this paper is to characterize those James spaces XF , for
which P0 is the unique minimal projection onto YF (see Theorem 2.5). We
also prove that for any Orlicz sequence F &P0&=1 (see Theorem 2.2).
This generalizes the results from [13, 9] concerning the case when F is a
constant sequence.

Now we present some results and definitions which will be of use later.
Let F be an Orlicz sequence and let

\(x)=sup[\F (xj1, ..., j2m+1
) : m # N*, 1� j1< } } } < j2m+1]. (0.1)

We will refer to it as F-modular.

Remark 0.2. Let F be an Orlicz sequence. Then for arbitrary x=[xn]:

(1) for every m # N*, 1� j1< } } } < j2m+1 xj1, ..., j2m+1
# lF ;

(2) &xj1, ..., j2m+1
&=min[M>0: \F (x j1, ..., j2m+1

�M)�1].
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Applying Remark 0.2 we obtain that XF is a Banach space, and & }& is
a norm. Moreover, we have

Lemma 0.3. For arbitrary x # XF , \(x)�1 if and only if &x&�1.

Now we present some properties of convex functions, which can be
found in [7, Chap. VII] (see also [1, 15]).

In the following theorems J denotes an open (not necessarily bounded)
interval.

Theorem 0.4. For function f : J � R the following conditions are equiv-
alent:

(1) function f is convex;

(2) for any x1<x2<x3 , (x3&x1) f (x2)�(x2&x1) f (x3)+(x3&x2)
f (x1);

(3) for any x1<x2<x3 , ( f (x2)& f (x1))�(x2&x1)�( f (x3)& f (x1))�
(x3&x1);

(4) for any x1<x2<x3 , ( f (x3)& f (x1))�(x3&x1)�( f (x3)& f (x2))�
(x3&x2).

Theorem 0.5. Let f : J � R be a convex function. Then the coresponding
function I defined by I(x, h)=( f (x+h)& f (x))�h is increasing with respect
to each variable.

Corollary 0.6. Let f : J � R be a convex function. Then for arbitrary
u�v�0 function g(x)= f (x+u)& f (x+v) is increasing.

Theorem 0.7. Let f : J � R be a convex function. Then for every x # J
there exists the right derivative f $+(x), and the left derivative f $&(x).
Moreover for all x, y # J x< y:

(1) f $&(x)� f $&( y), f $+(x)� f $+( y) and f $&(x)� f $+(x);

(2) limt � x+ f $+(t)=limt � x+ f $&(t)= f $+(x) and limt � x& f $+(t)=
limt � x& f $&(t)= f $&(x).

Theorem 0.8. Let fn : J � R be a sequence of convex functions, let 2 be
a dense subset of J. Suppose that for every n # N:

(1) supn fn(x)<+�, for every x # 2.

(2) infn fn(x)>&�, for an x0 # J.
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Then for every compact set E/J there is M>0 such that each fn , restricted
to E, satysfies a Lipschitz condition with M.

Theorem 0.9. Let fn : J � R be a sequence of convex functions. If the
sequence [ fn] converges pointwise on J to a finite function f, then f is convex.

Theorem 0.10. Let fn : J � R be a sequence of convex functions, and let
2 be a dense subset of J. If the sequence [ fn(x)] converges (to a finite limit)
for every x # 2, then the sequence [ fn] converges uniformly on every
compact subset of J.

Corollary 0.11. Let fn : J � R be a sequence of convex functions. If the
sequence [ fn] converges in J to a finite function f, then f is convex. Moreover
the sequence [ fn] converges uniformly to f on every compact subset of J.

Theorem 0.12. Let fn : J � R be a sequence of convex functions. If the
sequence [ fn] converges pointwise on J to a finite function f, then for
arbitrary sequence [xn]/J, xn � x0 # J

lim sup
n � �

( fn)$+ (xn)� f $+(x0).

1. TECHNICAL RESULTS

Let F=[ fn] be an Orlicz sequence. To the end of this section, putting
fn(0)=0 for x<0, we can treat each fn as a function defined on R.

Now let us define the following auxiliary functions:

�=sup
n # N

fn , �n= sup
1�i�n

f i , .=lim sup
n � �

fn , .n=sup
i�n

f i .(1.1)

Definition 1.1. We will call an Orlicz sequence F=[ fn] a proper
Orlicz sequence, if the function � is locally bounded at zero. Otherwise,
this sequence will be called degenerate.

Lemma 1.2. Let F=[ fn] be a degenerate Orlicz sequence. Then for
every x>0 �(x)=+�.

Proof. Since functions fn are increasing, � is also increasing. Note that
� is not locally bounded at zero. There is a sequence [xn] � 0+ such that
limn � � �(xn)=+�. Take any x>0. Since �(xn)��(x) for n sufficiently
large, the lemma is proved. K
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Theorem 1.3. Let F=[ fn] be a proper Orlicz sequence. Then there is
an interval I=(&�, d0), where d0>0, such that:

(1) � and . are finite and convex on I;

(2) �n converges uniformly to � on every compact contained in I;

(3) for every n # N, .n is convex;

(4) .n converges uniformly to . on every compact contained in I.

Proof. Since � is bounded on I=(&�, d0) for some d0>0, � is a finite
function on I. Let us define ,k, n=supk�i�k+n fi . It is clear that �n � �
and ,k, n � .k pointwise on I. Since for each k .k��, .k is a finite func-
tion on I. Moreover �n , ,k, n are convex. Thus by Corollary 0.11, �, .k are
convex on I, and also �n converges uniformly to � on every compact
contained in I. Since .��, . is a finite function on I. We also know that
.k � . pointwise on I, so from the previous considerations it follows that
.k are convex on I. Thus by Corollary 0.11 function . is also convex on
I, and in addition .n converges uniformly to . on every compact contained
in I. K

From Theorem 0.8 we immediately get

Corollary 1.4. If F=[ fn] is a proper Orlicz sequence, then there
exists .$+(0).

Lemma 1.5. Let I=(&�, d0), where d0>0. Let G be a sequence of
convex functions gn : I � R+ such that gn(0)=0, gn � (0, d0)>0. Assume
furthermore that [gn] converges pointwise on I to a convex function g. Then
for any sequence [xm]/(0, d0), xm � 0 and for any =>0 there exists n0

such that inequality

( gn)$+ (xm)& g$+(xm)<=

holds for any m # N and n�n0 .

Proof. Suppose, to the contrary, that for some sequence xm � 0+ and
for some =>0 inequality

( gnk
)$+ (xk)& g$+(xk)�= (1.2)

holds for a certain subsequence nk � +� and k # K/N.
There are two possibilities:

(10) [xk : k # K] is an infinite set.
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Passing to the subsequence, if neccessary, we may assume that xk � 0.
By Theorem 0.7

lim
k � �

g$+(xk)= g$+(0) (1.3)

and by Theorem 0.12

lim sup
k � �

( gnk
)$+ (xk)�g$+(0). (1.4)

Hence by (1. 2) we also have g$+(0)�=+ g$+(0), a contradiction.

(20) [xk : k # K] is a finite set.

Without loss, we can assume that ( gnk
)$+ (x)�g$+(x)+=, for some

x # [0, d0) which, by Theorem 0.12, leads to a contradiction. K

Corollary 1.6. Let F=[ fn] be a proper Orlicz sequence, and take
I=(&�, d0) from Theorem 1.3. Then for any sequence [xm]/(0, d0),
xm � 0 and for any =>0 there exists n0 such that the inequality

(.n)$+ (xm)&.$+(xm)<=

holds for any m # N and n�n0 . Here .n and . are functions defined by
(1.1).

Proof. A sequence [.n] converges pointwise on R to a function .,
which by Theorem 1.3 is finite and convex on I. Thus a sequence
G=[.n �I] fulfills the assumptions of Lemma 1.5. K

Lemma 1.7. Let F=[ fn] be a proper Orlicz sequence. Then for any
=>0 there is $>0 such that for arbitrary sequence [dm]/(0, $), dm � 0,

.n(dm)&.(dm)<= dm

holds for any m # N and n�n0 (here n0 depends on [dm]).

Proof. Fix =>0. Take I=(&�, d0). By Theorem 1.3, . is finite and
convex on I. By Theorem 0.7 there is $ # (0, d0) such that for any x�$

.$+(x)&.$+(0)<=�2. (1.5)

Take any sequence dm � 0+ contained in (0, $). By Corollary 1.6, we get

(.n)$+ (dm)&.$+(dm)<=�2 (1.6)

for any n�n0 and m # N.
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Combining (1.5) and (1.6) we obtain

(.n)$+ (dm)&.$+(0)=[(.n)$+ (dm)&.$+(dm)]&[.$+(dm)&.$+(0)]

<=�2+=�2==. (1.7)

Hence

(.n)$+ (dm)<=+.$+(0) (1.8)

for any n�n0 and m # N.
By Theorem 1.3 functions ., .n are finite and convex on I. Applying

Theorem 0.4 and Theorem 0.7 we get

.$+(0)�
.(dm)

dm
, for any n # N

and

(.n)$+ (dm)�(.n)$& (dm)�
.n(dm)

dm
, for any m, n # N.

Consequently, by (1.8)

.n(dm)
dm

�(.n)$+ (dm)<=+.$+(0)<=+
.(dm)

dm

for any n�n0 and m # N, which gives the result. K

Theorem 1.8. Let F=[ fn] be a proper Orlicz sequence, such that
.$+(0)=0. Take convex functions h1 , ..., hs : R+ � R+ with hi (0)=0 and
hi �(0, +�)>0. Then for any c>0, b>0 there is $>0 such that for arbitrary
[dm]/(0, $), dm � 0 there exists n0 such that

hi (b+c dm)>h i (b)+.n(dm)

for any i # [1, ..., s], n�n0 and m # N.

Proof. By Theorem 0.4 we get

hi (b+cx)&hi (b)�(hi)$+ (b) } cx, for any i # [1, ..., s], and x>0.

(1.9)
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Put = :=mini # [1, ..., s] [(hi)$+ (b) } c]. Note that c>0 and (hi)$+ (b)>0, for
each i. Hence =>0. Since limx � 0+ (.(x)�x)=.$+(0)=0, there is $1>0
such that

.(x)<
=
2

x, for any x<$1 . (1.10)

For =�2 choose $2 from Lemma 1.7. Put $=min[$1 , $2].
Now take any sequence dm � 0+ contained in (0, $). By Lemma 1.7 and

(1.10),

.n(dm)=[.n(dm)&.(dm)]+.(dm)<
=
2

dm+
=
2

dm== dm (1.11)

for any n�n0 and m # N.
By (1.9) and (1.11),

hi (b+c dm)&hi (b)�= dm>.n(dm)

for any i # [1, ..., s], n�n0 and m # N. K

Theorem 1.9. Let h : R+ � R+ be a convex function with properties:
h(0)=0 and h�(0, +�)>0. Let g : R+ � R+ _ [+�] be a function for which
there is d0>0 (d0 can be �) such that a function g is finite, convex and
g�(d0 , +�)=+�. Assume furthermore that g(0)=0, g�(0, d0)>0, g$+(0)>0
and g is increasing on R. Then there is c # (0, 1) such that for any b # R,
d # R"[0] with h( |b| )<2, h( |d | )<2,

h( |b+c d | )<h( |b| )+ g( |d | ).

Proof. Suppose b�0, d>0. Assume ;= g$+(0)>0. By Theorem 0.4
and by limx � d0

+ g(x)� g(d0),

;= g$+(0)�
g(x)

x
, for every x # R+. (1.12)

Note that 0<d<x0 , 0<b<x0 where x0 is such that h(x0)>2. Hence by
Theorem 0.8, h fulfills a Lipschitz condition on [&2x0 , 2x0] with a
constant M. Take c # (0, 1) such that c<;�M. Then

h(b+cd )&h(b)�M } cd<;d�g(d )

for any b # [0, x0), d # (0, x0).
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Note that for any b, d

h( |b+c d | )<h( |b|+c |d | ),

which completes the proof. K

Corollary 1.10. Let F=[ fn] be a proper Orlicz sequence, with
.$+(0)>0. Take a convex function h : R+ � R+ with properties: h(0)=0
and h�(0, d0)>0. Then there is c # (0, 1) such that for any b # R, d # R"[0],
h( |b| )<2, h( |d | )<2 we have

h( |b+c d | )<h( |b| )+.( |d | ),

where . is given by (1.1).

Proof. By Theorem 1.3 we can take the greatest number d0 (or �) such
that a function .�(&�, d0) is finite and convex. Then . with d0 satisfies the
assumptions of Theorem 1.9. K

Lemma 1.11. Take P # P(XF , YF ) given by Px=x&(limn � � xn) } y,
for every x # XF , where y=[ yn]n # N # XF and limn � � yn=1. Fix x # XF .
Then for any =>0 there are 1� j1< j2 , M0 such that for any M�M0 we
can choose K0(M), j3 , ..., j2M for which

\F ((Px) j1 , ..., j2M , k)>\(Px)&=

holds for every k�K0(M).

Proof. The proof is tedious and uses only the continuity of the
functions fi , thus we omit it. K

Remark 1.12. P # P(XF , YF ) is a norm-one projection if and only if
for arbitrary x # XF \(x)�1 implies \(Px)�1.

Lemma 1.13. Let F=[ fn] be a proper Orlicz sequence. Consider the
sequence x=[xn], such that xn=x for every n�n0 . Then x # XF .

Proof. The proof is routine, so we omit it. K

Remark 1.14. Let F=[ fn] be a proper Orlicz sequence. Then the
following conditions are equivalent:

(1) P # P(XF , YF );

(2) P is of the form Px=x&(limn � � xn) } y, for every x # XF , where
y=[ yn]n # N # XF and limn � � yn=1.

Proof. For a projection P # P(XF , YF ) putting y=e&P(e), where
e=(1, 1, 1, ...), we get the result. K
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2. MAIN RESULTS

If F=[ fn] is a degenerate Orlicz sequence, then by Lemma 1.5 we can
easily get the following

Remark 2.1. Let F=[ fn] be a degenerate Orlicz sequence. Then
XF =YF and consequently P(XF , YF )=[id]. Therefore, we will further
deal only with the case when F=[ fn] is a proper Orlicz sequence.

Theorem 2.2. Let F=[ fn] be a proper Orlicz sequence. Take
P0 # P(XY , YF ) given by P0 x=x&(limn � � xn) } (1, 1, ...), for any
x=[xn] # XF . Then &P0 &=1 and consequently P0 is a minimal projection.

Proof. In view of Remark 1.12, it is sufficient to show that for any
x # XF inequality \(x)�1 implies \(P0 x)�1.

To do this take any x # XF such that \(x)�1 and limn � � xn=d{0.
Fix any =>0. By Lemma 1.11 there exist M0 , j1< } } } < j2M , K0(M0) such
that

\(P0x)&=<\F ((P0 x) j1 , ..., j2M0
, k), for every k�K0(M0). (2.1)

Since |xn | � |d | and |xn&d | � 0, there is k1>K0 such that |xk1
|>|d |�2

and |xk1
&d |<|d |�2. Then

fM0+1( |xk1
| )� fM0+1( |d |�2)� fM0+1( |xk1

&d | ). (2.2)

Since P0 x=[xn&d]n # N , it follows from (2.2) that

\F ((x) j1 , ..., j2M0
, k1

)�\F ((P0x) j1 , ..., j2M0
, k1

).

Consequently, by (2.1) we get

\F ((x)j1 , ..., j2M0
, k1

)�\F ((P0x) j1 , ..., j2M0
, k1

)>\(P0x)&=.

Hence \(P0x)�\(x), which completes the proof. K

Now let us proceed to the proof of the main result. For this purpose let
us make a usefull definition.

Definition 2.3. Let n1 , n2 , ..., nn0+1 be fixed integers, all even or all
odd, such that nk+1>nk+6. For arbitrary numbers b, d, e let us denote by
x(b, d, e) the following sequence

x(b, d, e)=(0, ..., 0, #b
n1

, 0, ..., 0, #e
n2

, 0, ..., 0, #e
nn0

, 0, ..., 0, d, d
nn0+1

, ...), (2.3)

where # # [&1, 1]. By Lemma 1.13, x(b, d, e) # XF .
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Now we will prove a crucial lemma.

Lemma 2.4. Let F=[ fn] be a proper Orlicz sequence. Take [nk] the
same as in Definition 2.3. Then for any 0<b1<b2 there exist e>0
and d1>0 such that for all b # [b1 , b2] and d�d1 we can choose
1�l1< } } } <ln0

for which

(1) if #=1 then \(x(b, d, e))� fl1
(b)+ fl2

(e)+ } } } + fln0
(e)+2.n0

(d );
moreover, for some j1 , ..., j2m the sequence x(b, d, e) j1 , ..., j2m

has a form

(0, ..., 0, 0*&#b,
n1

l1th coordinate

0,..., 0, 0*&#e, 0
n2

l2th coordinate

, ..., 0, 0*&#e, 0,
nn0

ln0
th coordinate

0, ...);

(2) if #=&1 then \(x(b, d, e))� fl1
(b)+ fl2

(e)+ } } } + f ln0
&1(e)+

fln0
(e+d )+2.n0

(d ); moreover, for some j1 , ..., j2m the sequence
x(b, d, e) j1 , ..., j2m

has a form

(0, ..., 0, 0*&#b, 0
n1

l1th coordinate

, ..., 0, 0*&#e, 0
n2

l2 th coordinate

, ..., 0, d&#e, 0
nn0+1 nn0

ln0
th coordinate

, 0, ...),

(the sequence x(b, d, e) j1 , ..., j2m
defined above differs from a similar sequence

described in (1) only on the coordinate ln0
).

Here the symbol z
k

denotes that z is taken from the kth coordinate of the
sequence x(b, d, e), and 0*&z

n
is a shortened notation for 0

n+1
&z

n
.

Proof. Let us denote by 1 the set of all triples (#1 , #2 , #$1) such that
#1 # [0, 1], #$1 # [0, 1], #2=1 when #1=0, and #2 # [0, 1] when #1=1.

For fixed (#1 , #2 , #$1) # 1 a sequence l1 , ..., lk0
(k0�n0) will be called

(#1 , #2 , #$1) possible if there exist j1< } } } < j2m+1 such that

\F (x(b, d, e) j1 , ..., j2m+1
)= fl1

(#1 b&#2e)+ f l2
(e)+ } } } + f lk0

(e&##$1d )

+some elements of form fk(d),

where k>lk0
.

Let /#$1
k (d )=supk<k1<k2

[ fk1
(d )+ fk2

((1&#$1) d )]. By the definition of
\(x(b, d, e)), it is easy to see that

\(x(b, d, e))=max [max[ fl1
(#1b&#2e)+ fl2

(e)+ } } }

+ flk0
(e&##$1 d )+/#$1

lk0
(d), where (#1 , #2 , #$1) # 1

and l1 , ..., lk0
is a (#1 , #2 , #$1) possible sequence],
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max { f l1
(#1 b&##$1d )+/#$1

l1
(d ), where #1 , #2 , #$1 # 1

and l1�_n1+1
2 &= , [/1

0(d )]= . (2.4)

Since numbers l1 , ..., lk0
appearing in possible sequences can be estimated

from above by [(nn0
+1)�2], we can write above max instead of sup .

Now, consider the functions f8 k=infn�[(k+1)�2] fn , f� k=supn�[(k+1)�2] fn ,
.n=sup i�n f i . (Here the symbol [:] denotes the greatest integer less or
equal to :.)

Note that f8 k and f� k are convex for each k, moreover f8 k(0)= f� k(0)=0.
Hence f8 k and f� k are also increasing.

Choose d0 from Theorem 1.3. Then ��(&�, d0) is finite and convex.
Now take e # R for which

0<e<d0 �2 and n0 �(e)< f� n1
(b1). (2.5)

By Theorem 0.8, f� i fulfills a Lipschitz condition on [&(b2+1), b2+1].
Hence, by (2.5), there is d1 such that for any d�d1 , b�b1 and any
#1 , #2 , #$1 :

(1) f� n1
(#1b&##$1d )+2�(d)< f� n1

(#1b)+ f8 nn0
(e);

(2) for any i�_
nn0

+1

2 & fi (e+d )& fi (e)+2�(d )<f8 nn0
(e);

(2.6)
(3) (n0&1) �(e)+�(e+d)+2�(d )< f� n1

(b1);

(4) 2�(d )< f8 nn0
(e).

We divide our proof into two steps.

Step I. The following equality holds

\(x(b, d, e))=max[ fl1
(b)+ fl2

(e)+ } } } + flk0
(e&##$1d )+/#$1

lk0
(d ),

where #$1 # [0, 1] and l1 , ..., lk0

is a (1, 0, #$1) possible sequence].

For this purpose let us make some estimates.

(1) For any #1 , #$1 and l1�[(nn0
+1)�2]

max[ fl1
(#1b&##$1d )+/#$1

l1
(d), /1

0(d)]� f� n1
(b&##$1d )+2�(d )

< f� n1
(b)+ f8 nn0

(e)� fl $1
(b)+ fl $1+1(e).
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The last equality holds for l $1 such that f� n1
(b)= fl $1

(b) and l $1�[(nn0
+1)�2].

Note that the sequence l $1 , l $1+1 is (1, 0, 0) possible.

(2) For any system (0, 1, #$1) and (0, 1, #$1) possible sequence l1 , ..., lk0

we have

fl1
(e)+ } } } + flk0

(e&##$1d )+2�(d )

�(k0&1) �(e)+�(e+d)+2�(d )

�(n0&1) �(e)+�(e+d )+2�(d )< f� n1
(b1)� f� n1

(b)= fl $1
(b),

where l $1�[(n1+1)�2]. It is clear that the sequence l $1 is (1, 0, 0) possible.

(3) For any system (1, 1, #$1) and (1, 1, #$1) possible sequence l1 , ..., lk0

we have

fl1
(b&e)+ } } } + flk0

(e&##$1 d )+ fk1
(d )+ fk2

((1&#$1) d )

< fl1
(b)+ } } } + flk0

(e&##$1d )+ fk1
(d )+ fk2

((1&#$1) d )

for any k2>k1>lk0
.

Let \F (x(b, d, e) j1 , ..., j2m+1
) has the form of the left side above inequality.

Assume furthermore that e appearing in the factor fl1
(b&e) is taken from

the nj th coordinate in the sequence x(b, d, e). Between the n1 th coordinate
and the nj th coordinate in the sequence x(b, d, e) there is at least one zero.
Taking this zero and putting it in place of earlier mentioned e in the
sequence x(b, d, e) j1 , ..., j2m+1

we get a sequence which F-modular (see (0.1))
is equal to the right side above inequality. Thus sequence l1 , ..., lk0

is
(1, 0, #$1) possible.

Step II. If l1< } } } <lk0
is a (1, 0, #$1) possible sequence, then there are

l $2 , ..., l $n0
, l1<l $2< } } } <l $n0

and [l1 , l2 , ..., lk0
]/[l1 , l $2 , ..., l $n0

]. Moreover,
the sequence l1 , l $2 , ..., l $n0

is, for any #"1 # [0, 1], (1, 0, #"1) possible, also
there are j1 , ..., j2m such that x(b, d, e) j1 , ..., j2m

has a form

(0, ..., 0, 0*&#b, 0
n1

l1th coordinate

, ..., 0, 0*&#e, ...
n2

l $2 th coordinate

, 0*&#e,
nn0&1

l $n0&1th coordinate

, 0, ..., 0,

x(b, d, e)k&#e
nn0

l $n0
th coordinate

, 0, ...)

for any k>n0 .
To do this, take a (1, 0, #$1) possible sequence l1 , ..., lk0

. Then there exist
j1 , ..., j2m+1 such that \F (x(b, d, e) j1 , ..., j2m+1

)= fl1
(b)+ f l2

(e)+ } } } + flk0
(e&##$1d ). If in the sequence x(b, d, e) j1 , ..., j2m+1

, e (or b) which appears on

85THE UNIQUENESS OF NORM-ONE PROJECTION



the li th (resp. li+1 th) coordinate is taken from the np th (resp. nq th) coor-
dinate of the sequence x(b, d, e), then li+1&li�(nq&np)�2&1.

Consider a sequence x(b, d, e)1, 2, ..., 2[(n1&1)�2], n1 , ..., nn0
, k , where after n1

there are all numbers in succession up to n0 . In this sequence between the

terms of forms 0*&#e
np

(or 0*&#b
n1

) and 0*&#e
nq

there are exactly
(nq&np)�2&1 coordinates (having a form 0&0 or 0&#e). Thus by remov-
ing a proper number of systems having a form 0&0 or 0&#e we get a
sequence x(b, d, e) j $1 , ..., j $2m1

, which has on the li th coordinate (i>1) term
0*&#e, and on the l1 th term 0*&#b.

Assume that this sequence (i.e., x(b, d, e) j $1 , ..., j $2m1
) has t coordinates of

forms 0*&#b or 0*&#e, and designate them successively by s1 , ..., st

(obviously l1=s1 and [l2 , ..., lk0
]/[s1 , ..., st]).

Fix coordinates si and s i+1 (i # [1, ..., t&1]), assume that a non-zero
term (i.e., #b or #e) on the si th (resp. si+1 th) coordinate in the sequence
x(b, d, e) j $1 , ..., j $2m1

is taken from the np th (resp. nqth) coordinate of the
sequence x(b, d, e).

There exists u # [ p+1, ..., q] such that

nu&1&np

2
<si+1&s i�

nu&np

2
. (2.7)

If j $2:+1=np and j $2;+1=nq , then considering the sequence

x(b, d, e) j $1 , ..., j $2: , np , ..., nu+1 , j $2;+3 , ..., j $2m1
, (2.8)

where after np appear successively all numbers up to nu+1 , we can see that
in this sequence between coordinates in which there appear terms 0*&#e

np

(or 0*&#b
n1

) and 0*&#e
nu

there are (nu&np)�2&1 coordinates, of which
u& p&1 have a form 0*&#e. Since (nu&1&np)�2�u& p&1 and (2.7)
holds true, then by removing a proper numbers of systems of the form
0&0 from the sequence (2.8) we will get the sequence j"1 , ..., j"2m1

such that
x(b, d, e) j $1 , ..., j $2m1

is equal to x(b, d, e) j"1 , ..., j"2m1
on coordinates from 1 to si

and from the coordinate si+1 up. Moreover, in this sequence on coor-
dinates from si+1 to si+1&1 there appear all terms of the form 0*&#e

n1
,

for all j # [ p+1, ..., u&1], and on the coordinate s i+1 there is a term
0*&#e

nu
.

Now applying this procedure to a sequence x(b, d, e) j $1 , ..., j $2m1
and coor-

dinates s1 , s2 , we get a new sequence and applying to it the same procedure
to coordinates s2 , s3 , we get the next sequence, and so on. Finally, we get
a sequence x(b, d, e) j"1 , ..., j"2m1

, which has t1 coordinates of the form 0*&#e
or 0*&#b. Let these are the places r1<r2< } } } <rt1

then l1=s1=r1 and
[l2 , ..., lk0

]/[s2 , ..., st]/[r2 , ..., rt1
]. Moreover on the coordinate r1 there is
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a term 0*&#b
n1

and on the coordinate ri (for i=2, ..., t1) 0*&#e
nj

. Now by
completing a sequence j"1 , ..., j"2m1

to a sequence j"1 , ..., j"2m1
, nt1+1 , nt1+1+1,

..., nn0&1 , nn0&1+1, nn0
, k, where after the term j"2m1

there appear
successively all pair of terms from nt1+1 , nt1+1+1 to nn0&1 , nn0&1+1, we
will get a sequence which has the properties required in Step II.

Now let us come back to the proof of lemma.
First we consider the case #=1.
Let l1 , l2 , ..., lk0

(k0<n0) be any (1, 0, #$1) possible sequence. Choose for
it a sequence l1 , l $2 , ..., l $n0

from Step II and assume that l $i0 � [l1 , l2 , ..., lk0
].

Then

fl1
(b)+ fl2

(e)+ } } } + f lk0
(e&#$1d )+/#$1

lk0
(d )

� fl1
(b)+ fl2

(e)+ } } } + flk0
(e)+2�(d )

< fl1
(b)+ fl2

(e)+ } } } + flk0
(e)+ f l $i0

(e)

� fl1
(b)+ fl $2

(e)+ } } } + fl $n0
(e).

Thus by Step I and properties of [l1 , l $2 , ..., l $n0
] we get

\(x(b, d, e))=max[ fl1
(b)+ fl2

(e)+ } } } + flk0
(e&#$1 d )+/#$1

lk0
(d ),

where #$1 # [0, 1] and l1 , ..., lk0

is a (1, 0, #$1) possible sequence]

=max[ fl1
(b)+ fl2

(e)+ } } } + fln0
(e)+/0

ln0
(d ),

where l1 , ..., ln0
is a (1, 0, 0) possible sequence

having properties required in Step II]

=(for a certain (1, 0, 0) possible sequence l1
1 , ..., l1

n0

having properties required in Step II)

= fl
1
1(b)+ fl

2
1(e)+ } } } + fl1

n0
(e)+/0

l1
n0

(d )

� fl
1
1(b)+ fl

2
1(e)+ } } } + fl1

n0
(e)+2�n0

(d ).

Hence the lemma is proved in this case.
Now, consider the second case, i.e., #=&1.
Let l1 , l2 , ..., lk0

(k0<n0) be any (1, 0, #$1) possible sequence. Choose for
it a sequence l1 , l $2 , ..., l $n0

from Step II and assume that l $i0 � [l1 , l2 , ..., lk0
].

Then

fl1
(b)+ fl2

(e)+ } } } + flk0
(e+#$1d )+/#$1

lk0
(d )

� fl1
(b)+ fl2

(e)+ } } } + flk0
(e+#$1d )+2�(d )

< fl1
(b)+ fl2

(e)+ } } } + flk0
(e)+ fl $i0

(e)

� fl1
(b)+ fl $2

(e)+ } } } + fl $n0
(e+d ).
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Thus by Step I and properties of [l1 , l $2 , ..., l $n0
] we get

\(x(b, d, e))=max[ fl1
(b)+ fl2

(e)+ } } } + flk0
(e+#$1 d )+/#$1

lk0
(d ),

where #$1 # [0, 1] and l1 , ..., lk0

is a (1, 0, #$1) possible sequence]

=max[ fl1
(b)+ fl2

(e)+ } } } + fln0
(e+d )+/0

ln0
(d ),

where l1 , ..., ln0
is a (1, 0, 1) possible sequence

having properties required in Step II]

=(for a certain (1, 0, 1) possible sequence l1
1 , ..., l1

n0

having properties required in Step II)

= fl 1
1(b)+ fl2

1(e)+ } } } + fl1
n0

(e+d )+/0
l1

n0
(d )

� fl
1
1(b)+ fl

2
1(e)+ } } } + fl1

n0
(e+d )+2�n0

(d ).

Hence the lemma is proved in this case, too. K

Now we are able to prove the following

Theorem 2.5. Let F=[ fn] be a proper Orlicz sequence. Take the
``natural projection'' P0 # P(XF , YF ) defined in Theorem 2.2. Then P0 is the
unique minimal projection in P(XF , YF ) if and only if .$+(0)=0, where
.=lim supn � � fn .

Proof. By Theorem 2.2, P0 is a minimal projection in P(XF , YF )
Suppose .$+(0)=0 and take any P # P(XF , YF ). By Remark 1.14 there

is y=[ yn] # XF , limn � � yn=1 such that

Px=x&( lim
n � �

xn) } y, for any x=[xn] # XF .

Now asume that P{P0 . There are two possible cases:

(1) There is a subsequence [ ynk
] of the sequence [ yn] with properties:

For any k # N ynk
� ynk+1 and ynk

� ynk+1
, moreover yn1

> yn1+1 .

Numbers [nk], k # N are all even or all odd, and for any k # N
nk+1>nk+6.

(2) There is a subsequence [ ynk
] of the sequence [ yn] with properties:

For any k # N ynk
� ynk+1 and ynk

� ynk+1
, moreover yn1

< yn1+1 .

Numbers [nk], k # N are all even or all odd, and for any k # N
nk+1>nk+6.
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Put c=| yn1+1& yn1
|>0 and #=sgn( yn1+1& yn1

).
Consider functions f8 k=infn�[(k+1)�2] fn , f� k=supn�[(k+1)�2] fn , .n=

supi�n fi . (Here the symbol [:] denotes the greatest integer less or equal
to :.)

Note that f8 k and f� k are convex for each k, moreover f8 k(0)= f� k(0)=0.
Also limx � � f8 k(x)=limx � � f� k(x)=+�. Therefore there are b1 , b2 ,
0<b1<b2 such that

1
4< f� n1

(b1)< 1
2<1< f8 n1

(b2). (2.9)

Choose d0 from Theorem 1.3. Then �� (&�, d0) is finite and convex.
For numbers c>0, b1>0 and functions f1 , ..., f[(n1+1)�2] take $>0 from

Theorem 1.8. Take any sequence d& � 0+, d&�min[$, d0 �2]. By
Theorem 1.8 there is n0 such that

fi (b1+cd&)> f i (b1)+2.n0
(d&)

for any i # [1, ..., [(n1+1)�2]], and & # N.
By Corollary 0.6, a function hi (x)= fi (x+cd )& fi (x) is increasing, for

fixed c, d, i, thus for b�b1 we have fi (b+cd )& f i (b)� f i (b1+cd)&
fi (b1)>2.n0

(d ). Hence we get

fi (b+cd&)> f i (b)+2.n0
(d&) (2.10)

for any i # [1, ..., [(n1+1)�2]], & # N, and b # [b1 , b2].
For b1<b2 choose e, d1 from Lemma 2.4. Since d& � 0 there is d&0

�d1 .
For any b # [b1 , b2] consider the sequence x(b)=x(b, d&0

, e) (see Defini-
tion 2.3). Let us remind that b, e, d&0

fulfill (2.5) and (2.6) (see the proof of
Lemma 2.4).

By the formulas on P and x(b) we get

Px(b)=(&d&0
y1 , ..., &d&0

yn1&1 , #b& yn1
d&0

,

n1

&yn1+1 d&0
,

n1+1

..., #e& yn2
d&0

,

n2

& yn2+1 d&0
,

n2+1

..., #e& ynn0
d&0

,

nn0

&ynn0
+1 d&0

,

nn0
+1

..., (1& ynn0+1
) d&0

,

nn0+1

...).

Now we are going to show that (in both cases (1) and (2))

\(Px(b))>\(x(b)), for every b # [b1 , b2]. (2.11)

Consider the case (1), then #=&1.
Take l1 , ..., ln0

and j1 , ..., j2m from Lemma 2.4, point (2). Modifying &0 , if
necessary, by (2.10) and Lemma 2.4 we have
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\(Px(b))�\((Px(b)) j1 , ..., j2m
)

� fl1
( |& yn1+1 d&0

+b+ yn1
d&0

| )

+ fl2
( |& yn2+1 d&0

+e+ yn2
d&0

| )+ } } }

+ fln0&1
( |& ynn0&1+1 d&0

+e+ ynn0&1
d&0

| )

+ fln0
( |(1& ynn0+1

) d&0
+e+ ynn0

d&0
| )

= fl1
(b+( yn1

& yn1+1) d&0

=c

)+ fl2
(e+( yn2

& yn2+1) d&0

�0

)+ } } }

+ fln0&1
(e+( ynn0&1

& ynn0&1+1) d&0
)

�0

+ fln0
(e+d&0

+( ynn0
& ynn0+1

) d&0

�0

)

� fl1
(b+cd&0

)+ fl2
(e)+ } } } + f ln0&1

(e)+ fln0
(e+d&0

)

> fl1
(b)+ f l2

(e)+ } } } + fln0&1
(e)+ f ln0

(e+d&0
)+2.n0

(d&0
)

�\(x(b)).

Now consider the case (2), then #=1.
Take l1 , ..., ln0

and j1 , ..., j2m from Lemma 2.4, point (1). Modifying &0 , if
necessary, by (2.10) and Lemma 2.4 we have

\(Px(b))�\((Px(b)) j1 , ..., j2m
)

� fl1
( |& yn1+1 d&0

&b+ yn1
d&0

| )

+ fl2
( |& yn2+1 d&0

&e+ yn2
d&0

| )+ } } }

+ fln0
( |& ynn0

+1 d&0
&e+ ynn0

d&0
| )

= fl1
(b+( yn1+1& yn1

) d&0

=c

)+ fl2
(e+( yn2+1& yn2

) d&0

�0

)+ } } }

+ fln0
(e+( ynn0

+1& ynn0
) d&0

�0

)

� fl1
(b+cd&0

)+ fl2
(e)+ } } } + f ln0

(e)

> fl1
(b)+ f l2

(e)+ } } } + fln0
(e)+2.n0

(d&0
)�\(x(b)).

Now, consider a function t : b [ \(x(b)). It can be easily seen that for a
fixed d&0

and e this function is continuous. And since, by Lemma 2.4, (2.6),
and (2.9)
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t(b1)=\(x(b1))� f� n1
(b1)+(n0&1) �(e)+�(e+d&0

)+2�(d&0
)

<2f� n1
(b1)<1,

t(b2)=\(x(b2))� f� n1
(b2)>1,

therefore there is b0 # (b1 , b2) such that

1=t(b0)=\(x(b0)).

Thus for this b0 , by (2.11), we have

\(Px(b0))>\(x(b0))=1.

Hence, by Remark 1.12, &P&>1, and consequently P0 is the only minimal
projection and has norm equal to 1.

To prove the converse suppose .$+(0)>0 (by Corollary 1.4 .$+(0)
exists). Take c # (0, 1) from Corollary 1.10 for a function h= f1 . Put

y0=(1&c, 1, 1, ...), (2.12)

and let

P : XF % x [ x&( lim
n � �

xn) } y0 # YF . (2.13)

By Remark 1.14, P # P(XF , YF ). Obviously P{P0 , since y0 {(1, 1, 1, ...)
and there is x # XF "YF .

Take any x=[xn] # XF , \(x)�1 and denote d=limn � � xn . We show
that

\(Px)�\(x).

Without loss, we can assume that d{0.
Fix any =>0. By Lemma 1.11, we can take 1� j1< j2 , M0 such that for

any M�M0 we can choose K0(M), j3 , ..., j2M such that

\F ((Px) j1 , ..., j2M , k)>\(Px)&= (2.14)

for every k�K0(M).
If j1 {1, then by (2.14) we obtain

\(x)�\F (xj1 , ..., j2M0
, K0(M0))=\F ((Px) j1 , ..., j2M0

, K0(M0))>\(Px)&=,

that is,

\(x)>\(Px)&=.
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Now assume that j1=1. It will be shown that there exist M1�M0 ,
K1�K0(M1) such that

f1( |x j2
&x1 | )+ fM1+1( |xK1

| )� f1( |xj2
&x1+cd | )+ fM1+1( |xK1

&d | ),

(2.15)

where j2 , M0 , M1 , K0(M1) are chosen from (2.14).
If not, then for any M�M0 , K�K0(M) f1( |x j2

&x1 | )+ fM+1( |xK | )<
f1( |x j2

&x1+cd | )+ fM+1( |xK&d | ). Since xK � d, we get

f1( |x j2
&x1 | )+ fM+1( |d | )� f1( |xj2

&x1+cd | )

for any M�M0 .
But by the definition of . there exists a sequence [Ml] such that

fMl
( |d | ) � .( |d | ), l � �. Hence

f1( |x j2
&x1 | )+ fMl

( |d | )� f1( |xj2
&x1+cd | )

for any l # N. Passing with l to infinity, we get

f1( |x j2
&x1 | )+.( |d | )� f1( |x j2

&x1+cd | ). (2.16)

By (2.16), .( |d | )<+�. Since f1( |x j2
&x1 | )<2 and f1( |d | )<2 (it

follows from \(x)�1), by Corollary 1.10 we get

f1( |x j2
&x1+cd | )< f1( |xj2

&x1 | )+.( |d | ), (2.17)

a contradiction with (2.16).
Now, for M1 choose numbers j3 , ..., j2m+1 from (2.14). Note that, by

(2.13), (2.15) is equivalent to

\F (xj1 , ..., j2M1
, K1

)�\F ((Px) j1 , ..., j2M1
, K1

).

By (2.14),

\(x)�\F (xj1 , ..., j2M1
, K1

)�\F ((Px) j1 , ..., j2M1
, K1

)>\(Px)&=.

Thus in both cases we have proved that \(x)>\(Px)&=, for any =>0.
By Remark 1.12, &P&=1, and consequently P is a minimal projection
different from P0 . K
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