# The Uniqueness of Norm-One Projection in James-Type Spaces 

Lesław Skrzypek<br>Department of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland<br>E-mail: skrzypek@im.uj.edu.pl<br>Communicated by E. W. Cheney

Received May 21, 1998; accepted in revised form November 5, 1998

For the James-type space $\mathscr{X}_{\mathscr{F}}$ generated by a sequence of functions $\mathscr{F}=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ we present a sufficient and necessary condition under which there exists a unique minimal projection from $\mathscr{X}_{\mathscr{F}}$ onto $\mathscr{Y}_{\mathscr{F}}=\mathscr{X}_{\mathscr{F}} \cap c_{0}$. © 1999 Academic Press

## 0. INTRODUCTION

Let $\mathscr{F}=\left\{f_{n}\right\}_{n \in \mathbb{N}}$, be a sequence of convex functions $f_{n}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f_{n}(0)=0$ and $f_{n} /_{(0,+\infty)}>0$, for every $n \in \mathbb{N}$. A sequence of functions with the above properties will be called an Orlicz sequence.

Let $\mathscr{F}=\left\{f_{n}\right\}$ be an Orlicz sequence. For any sequence of real numbers $\mathbf{x}=\left\{x_{n}\right\}$ put

$$
\rho_{\mathscr{F}}(\mathbf{x})=\sum_{n=1}^{\infty} f_{n}\left(\left|x_{n}\right|\right) .
$$

Then a Musielak-Orlicz sequence space is defined by

$$
\ell_{\mathscr{F}}=\left\{\mathbf{x}=\left\{x_{n}\right\}_{n \in \mathbb{N}}: \lim _{\lambda \rightarrow 0} \rho_{\mathscr{F}}(\lambda \mathbf{x})=0\right\} .
$$

We can equip $\ell_{\mathscr{F}}$ with the Luxemburg norm

$$
\|\mathbf{x}\|_{\mathscr{F}}=\inf \left\{d>0: \rho_{\mathscr{F}}(\mathbf{x} / d) \leqslant 1\right\} .
$$

For basic facts concerning Musielak-Orlicz spaces the reader is reffered to [10].

Now fix any sequence of real numbers $\mathbf{x}=\left\{x_{n}\right\}, m \in \mathbb{N}^{*}=\mathbb{N} \cup\{0\}$, $1 \leqslant j_{1}<\cdots<j_{2 m+1}$, and put

$$
\mathbf{x}_{j_{1}}, \ldots, j_{2 m+1}=\left(x_{j_{2}}-x_{j_{1}}, \ldots, x_{j_{2 m}}-x_{j_{2 m-1}}, x_{j_{2 m+1}}, 0, \ldots\right)
$$

Definition 0.1. Let $\mathscr{X}_{\mathscr{F}}=\left\{\mathbf{x}=\left\{x_{n}\right\}_{n \in \mathbb{N}} \in c:\|\mathbf{x}\|<+\infty\right\}$ where

$$
\|\mathbf{x}\|=\sup \left\{\left\|\mathbf{x}_{j_{1}, \ldots, j_{2 m+1}}\right\| \|_{\mathscr{F}}: m \in \mathbb{N}^{*}, 1 \leqslant j_{1}<\cdots<j_{2 m+1}\right\} .
$$

Then the space $\left(\mathscr{X}_{\mathscr{F}},\|\cdot\|\right)$ will be called the James space generated by $\mathscr{F}$.
Put $\mathscr{Y}_{\mathscr{F}}=\mathscr{X}_{\mathscr{F}} \cap c_{0}$. Note that if for all $n \in \mathbb{N} f_{n}(t)=t^{2}$ then $\mathscr{Y}_{\mathscr{F}}$ is exactly the famous James space introducted in [5] and $\mathscr{X}_{\mathscr{F}}=\mathscr{O}_{\mathscr{F}}^{* *}$. For other generalizations of the James space see, e.g., [17].

Let $\mathscr{P}\left(X_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$ denote the set of all linear projections from $\mathscr{X}_{\mathscr{F}}$ onto $\mathscr{Y}_{\mathscr{F}}$, i.e.,

$$
\mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)=\left\{P \in \mathscr{L}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right): P{/ \mathscr{Y}_{\mathscr{F}}}=\mathrm{id}_{\mathscr{Y}_{\mathscr{F}}}\right\} .
$$

A projection $P_{0} \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$ is called minimal if

$$
\left\|P_{0}\right\|=\lambda\left(\mathscr{Y}_{\mathscr{F}}, \mathscr{X}_{\mathscr{F}}\right)=\inf \left\{\|P\|: P \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)\right\} .
$$

The constant $\lambda\left(\mathscr{Y}_{\mathscr{F}}, X_{\mathscr{F}}\right)$ is called the relative projection constant.
Note that the problem of finding a minimal projection, from a Banach space $X$ onto a subspace $Y$, is strictly related to the Hahn-Banach extension theorem, because we look for an extension of the id: $Y \rightarrow Y$ to $X$ of minimal norm.

For more information concerning minimal projection (existence, effective formulas, uniqueness or estimates of the norm) the reader is referred to $[2-4,6,8,11,12,14,16]$.

Now, take $P_{0} \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$ given by

$$
P_{0} \mathbf{x}=\mathbf{x}-\left(\lim _{n \rightarrow \infty} x_{n}\right) \cdot(1,1, \ldots) .
$$

The aim of this paper is to characterize those James spaces $\mathscr{X}_{\mathscr{F}}$, for which $P_{0}$ is the unique minimal projection onto $\mathscr{Y}_{\mathscr{F}}$ (see Theorem 2.5). We also prove that for any Orlicz sequence $\mathscr{F}\left\|P_{0}\right\|=1$ (see Theorem 2.2). This generalizes the results from [13,9] concerning the case when $\mathscr{F}$ is a constant sequence.

Now we present some results and definitions which will be of use later. Let $\mathscr{F}$ be an Orlicz sequence and let

$$
\begin{equation*}
\rho(\mathbf{x})=\sup \left\{\rho_{\mathscr{F}}\left(\mathbf{x}_{j_{1}, \ldots, j_{2 m+1}}\right): m \in \mathbb{N}^{*}, 1 \leqslant j_{1}<\cdots<j_{2 m+1}\right\} . \tag{0.1}
\end{equation*}
$$

We will refer to it as $\mathscr{F}$-modular.
Remark 0.2. Let $\mathscr{F}$ be an Orlicz sequence. Then for arbitrary $\mathbf{x}=\left\{x_{n}\right\}$ :
(1) for every $m \in \mathbb{N}^{*}, 1 \leqslant j_{1}<\cdots<j_{2 m+1} \mathbf{x}_{j_{1}, \ldots, j_{2 m+1}} \in \ell_{\mathscr{F}}$;

$$
\begin{equation*}
\left\|\mathbf{x}_{j_{1}, \ldots, j_{2 m+1}}\right\|=\min \left\{M>0: \rho_{\mathscr{F}}\left(\mathbf{x}_{j_{1}, \ldots, j_{2 m+1}} / M\right) \leqslant 1\right\} . \tag{2}
\end{equation*}
$$

Applying Remark 0.2 we obtain that $\mathscr{X}_{\mathscr{F}}$ is a Banach space, and $\|\cdot\|$ is a norm. Moreover, we have

Lemma 0.3. For arbitrary $\mathbf{x} \in \mathscr{X}_{\mathscr{F}}, \rho(\mathbf{x}) \leqslant 1$ if and only if $\|\mathbf{x}\| \leqslant 1$.
Now we present some properties of convex functions, which can be found in [7, Chap. VII] (see also [1, 15]).

In the following theorems $J$ denotes an open (not necessarily bounded) interval.

Theorem 0.4. For function $f: J \rightarrow \mathbb{R}$ the following conditions are equivalent:
(1) function $f$ is convex;
(2) for any $x_{1}<x_{2}<x_{3},\left(x_{3}-x_{1}\right) f\left(x_{2}\right) \leqslant\left(x_{2}-x_{1}\right) f\left(x_{3}\right)+\left(x_{3}-x_{2}\right)$ $f\left(x_{1}\right)$;
(3) for any $x_{1}<x_{2}<x_{3},\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) /\left(x_{2}-x_{1}\right) \leqslant\left(f\left(x_{3}\right)-f\left(x_{1}\right)\right) /$ $\left(x_{3}-x_{1}\right)$;
(4) for any $x_{1}<x_{2}<x_{3},\left(f\left(x_{3}\right)-f\left(x_{1}\right)\right) /\left(x_{3}-x_{1}\right) \leqslant\left(f\left(x_{3}\right)-f\left(x_{2}\right)\right) /$ $\left(x_{3}-x_{2}\right)$.

Theorem 0.5. Let $f: J \rightarrow \mathbb{R}$ be a convex function. Then the coresponding function I defined by $I(x, h)=(f(x+h)-f(x)) / h$ is increasing with respect to each variable.

Corollary 0.6. Let $f: J \rightarrow \mathbb{R}$ be a convex function. Then for arbitrary $u \geqslant v \geqslant 0$ function $g(x)=f(x+u)-f(x+v)$ is increasing.

Theorem 0.7. Let $f: J \rightarrow \mathbb{R}$ be a convex function. Then for every $x \in J$ there exists the right derivative $f_{+}^{\prime}(x)$, and the left derivative $f^{\prime}(x)$. Moreover for all $x, y \in J x<y$ :
(1) $f_{-}^{\prime}(x) \leqslant f_{-}^{\prime}(y), f_{+}^{\prime}(x) \leqslant f_{+}^{\prime}(y)$ and $f^{\prime}(x) \leqslant f_{+}^{\prime}(x)$;
(2) $\lim _{t \rightarrow x^{+}} f_{+}^{\prime}(t)=\lim _{t \rightarrow x^{+}} f_{-}^{\prime}(t)=f_{+}^{\prime}(x)$ and $\lim _{t \rightarrow x^{-}} f_{+}^{\prime}(t)=$ $\lim _{t \rightarrow x^{-}} f_{-}^{\prime}(t)=f_{-}^{\prime}(x)$.

Theorem 0.8. Let $f_{n}: J \rightarrow \mathbb{R}$ be a sequence of convex functions, let $\Delta$ be a dense subset of $J$. Suppose that for every $n \in \mathbb{N}$ :
(1) $\sup _{n} f_{n}(x)<+\infty$, for every $x \in \Delta$.
(2) $\inf _{n} f_{n}(x)>-\infty$, for an $x_{0} \in J$.

Then for every compact set $E \subset J$ there is $M>0$ such that each $f_{n}$, restricted to $E$, satysfies a Lipschitz condition with $M$.

Theorem 0.9. Let $f_{n}: J \rightarrow \mathbb{R}$ be a sequence of convex functions. If the sequence $\left\{f_{n}\right\}$ converges pointwise on $J$ to a finite function $f$, then $f$ is convex.

Theorem 0.10. Let $f_{n}: J \rightarrow \mathbb{R}$ be a sequence of convex functions, and let $\Delta$ be a dense subset of J. If the sequence $\left\{f_{n}(x)\right\}$ converges (to a finite limit) for every $x \in \Delta$, then the sequence $\left\{f_{n}\right\}$ converges uniformly on every compact subset of $J$.

Corollary 0.11. Let $f_{n}: J \rightarrow \mathbb{R}$ be a sequence of convex functions. If the sequence $\left\{f_{n}\right\}$ converges in $J$ to a finite function $f$, then $f$ is convex. Moreover the sequence $\left\{f_{n}\right\}$ converges uniformly to $f$ on every compact subset of $J$.

Theorem 0.12 . Let $f_{n}: J \rightarrow \mathbb{R}$ be a sequence of convex functions. If the sequence $\left\{f_{n}\right\}$ converges pointwise on $J$ to a finite function $f$, then for arbitrary sequence $\left\{x_{n}\right\} \subset J, x_{n} \rightarrow x_{0} \in J$

$$
\limsup _{n \rightarrow \infty}\left(f_{n}\right)_{+}^{\prime}\left(x_{n}\right) \leqslant f_{+}^{\prime}\left(x_{0}\right) .
$$

## 1. TECHNICAL RESULTS

Let $\mathscr{F}=\left\{f_{n}\right\}$ be an Orlicz sequence. To the end of this section, putting $f_{n}(0)=0$ for $x<0$, we can treat each $f_{n}$ as a function defined on $\mathbb{R}$.

Now let us define the following auxiliary functions:

$$
\psi=\sup _{n \in \mathbb{N}} f_{n}, \quad \psi_{n}=\sup _{1 \leqslant i \leqslant n} f_{i}, \quad \varphi=\limsup _{n \rightarrow \infty} f_{n}, \quad \varphi_{n}=\sup _{i \geqslant n} f_{i} \cdot(1.1)
$$

Definition 1.1. We will call an Orlicz sequence $\mathscr{F}=\left\{f_{n}\right\}$ a proper Orlicz sequence, if the function $\psi$ is locally bounded at zero. Otherwise, this sequence will be called degenerate.

Lemma 1.2. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a degenerate Orlicz sequence. Then for every $x>0 \psi(x)=+\infty$.

Proof. Since functions $f_{n}$ are increasing, $\psi$ is also increasing. Note that $\psi$ is not locally bounded at zero. There is a sequence $\left\{x_{n}\right\} \rightarrow 0^{+}$such that $\lim _{n \rightarrow \infty} \psi\left(x_{n}\right)=+\infty$. Take any $x>0$. Since $\psi\left(x_{n}\right) \leqslant \psi(x)$ for $n$ sufficiently large, the lemma is proved.

Theorem 1.3. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence. Then there is an interval $I=\left(-\infty, d_{0}\right)$, where $d_{0}>0$, such that:
(1) $\psi$ and $\varphi$ are finite and convex on I;
(2) $\psi_{n}$ converges uniformly to $\psi$ on every compact contained in I;
(3) for every $n \in \mathbb{N}, \varphi_{n}$ is convex;
(4) $\varphi_{n}$ converges uniformly to $\varphi$ on every compact contained in I.

Proof. Since $\psi$ is bounded on $I=\left(-\infty, d_{0}\right)$ for some $d_{0}>0, \psi$ is a finite function on $I$. Let us define $\phi_{k, n}=\sup _{k \leqslant i \leqslant k+n} f_{i}$. It is clear that $\psi_{n} \rightarrow \psi$ and $\phi_{k, n} \rightarrow \varphi_{k}$ pointwise on $I$. Since for each $k \varphi_{k} \leqslant \psi, \varphi_{k}$ is a finite function on $I$. Moreover $\psi_{n}, \phi_{k, n}$ are convex. Thus by Corollary $0.11, \psi, \varphi_{k}$ are convex on $I$, and also $\psi_{n}$ converges uniformly to $\psi$ on every compact contained in $I$. Since $\varphi \leqslant \psi, \varphi$ is a finite function on $I$. We also know that $\varphi_{k} \rightarrow \varphi$ pointwise on $I$, so from the previous considerations it follows that $\varphi_{k}$ are convex on $I$. Thus by Corollary 0.11 function $\varphi$ is also convex on $I$, and in addition $\varphi_{n}$ converges uniformly to $\varphi$ on every compact contained in $I$.

From Theorem 0.8 we immediately get

Corollary 1.4. If $\mathscr{F}=\left\{f_{n}\right\}$ is a proper Orlicz sequence, then there exists $\varphi_{+}^{\prime}(0)$.

Lemma 1.5. Let $I=\left(-\infty, d_{0}\right)$, where $d_{0}>0$. Let $\mathscr{G}$ be a sequence of convex functions $g_{n}: I \rightarrow \mathbb{R}^{+}$such that $g_{n}(0)=0, g_{n} /_{\left(0, d_{0}\right)}>0$. Assume furthermore that $\left\{g_{n}\right\}$ converges pointwise on I to a convex function $g$. Then for any sequence $\left\{x_{m}\right\} \subset\left(0, d_{0}\right), x_{m} \rightarrow 0$ and for any $\varepsilon>0$ there exists $n_{0}$ such that inequality

$$
\left(g_{n}\right)_{+}^{\prime}\left(x_{m}\right)-g_{+}^{\prime}\left(x_{m}\right)<\varepsilon
$$

holds for any $m \in \mathbb{N}$ and $n \geqslant n_{0}$.
Proof. Suppose, to the contrary, that for some sequence $x_{m} \rightarrow 0^{+}$and for some $\varepsilon>0$ inequality

$$
\begin{equation*}
\left(g_{n_{k}}\right)_{+}^{\prime}\left(x_{k}\right)-g_{+}^{\prime}\left(x_{k}\right) \geqslant \varepsilon \tag{1.2}
\end{equation*}
$$

holds for a certain subsequence $n_{k} \rightarrow+\infty$ and $k \in K \subset \mathbb{N}$.
There are two possibilities:
$\left(1^{0}\right) \quad\left\{x_{k}: k \in K\right\}$ is an infinite set.

Passing to the subsequence, if neccessary, we may assume that $x_{k} \rightarrow 0$. By Theorem 0.7

$$
\begin{equation*}
\lim _{k \rightarrow \infty} g_{+}^{\prime}\left(x_{k}\right)=g_{+}^{\prime}(0) \tag{1.3}
\end{equation*}
$$

and by Theorem 0.12

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left(g_{n_{k}}\right)_{+}^{\prime}\left(x_{k}\right) \leqslant g_{+}^{\prime}(0) \tag{1.4}
\end{equation*}
$$

Hence by (1.2) we also have $g_{+}^{\prime}(0) \geqslant \varepsilon+g_{+}^{\prime}(0)$, a contradiction.
$\left(2^{0}\right) \quad\left\{x_{k}: k \in K\right\}$ is a finite set.
Without loss, we can assume that $\left(g_{n_{k}}\right)_{+}^{\prime}(x) \geqslant g_{+}^{\prime}(x)+\varepsilon$, for some $x \in\left[0, d_{0}\right)$ which, by Theorem 0.12 , leads to a contradiction.

Corollary 1.6. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence, and take $I=\left(-\infty, d_{0}\right)$ from Theorem 1.3. Then for any sequence $\left\{x_{m}\right\} \subset\left(0, d_{0}\right)$, $x_{m} \rightarrow 0$ and for any $\varepsilon>0$ there exists $n_{0}$ such that the inequality

$$
\left(\varphi_{n}\right)_{+}^{\prime}\left(x_{m}\right)-\varphi_{+}^{\prime}\left(x_{m}\right)<\varepsilon
$$

holds for any $m \in \mathbb{N}$ and $n \geqslant n_{0}$. Here $\varphi_{n}$ and $\varphi$ are functions defined by (1.1).

Proof. A sequence $\left\{\varphi_{n}\right\}$ converges pointwise on $\mathbb{R}$ to a function $\varphi$, which by Theorem 1.3 is finite and convex on $I$. Thus a sequence $\mathscr{G}=\left\{\varphi_{n} / I\right\}$ fulfills the assumptions of Lemma 1.5.

Lemma 1.7. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence. Then for any $\varepsilon>0$ there is $\delta>0$ such that for arbitrary sequence $\left\{d_{m}\right\} \subset(0, \delta), d_{m} \rightarrow 0$,

$$
\varphi_{n}\left(d_{m}\right)-\varphi\left(d_{m}\right)<\varepsilon d_{m}
$$

holds for any $m \in \mathbb{N}$ and $n \geqslant n_{0}$ (here $n_{0}$ depends on $\left\{d_{m}\right\}$ ).
Proof. Fix $\varepsilon>0$. Take $I=\left(-\infty, d_{0}\right)$. By Theorem 1.3, $\varphi$ is finite and convex on $I$. By Theorem 0.7 there is $\delta \in\left(0, d_{0}\right)$ such that for any $x \leqslant \delta$

$$
\begin{equation*}
\varphi_{+}^{\prime}(x)-\varphi_{+}^{\prime}(0)<\varepsilon / 2 . \tag{1.5}
\end{equation*}
$$

Take any sequence $d_{m} \rightarrow 0^{+}$contained in $(0, \delta)$. By Corollary 1.6 , we get

$$
\begin{equation*}
\left(\varphi_{n}\right)_{+}^{\prime}\left(d_{m}\right)-\varphi_{+}^{\prime}\left(d_{m}\right)<\varepsilon / 2 \tag{1.6}
\end{equation*}
$$

for any $n \geqslant n_{0}$ and $m \in \mathbb{N}$.

Combining (1.5) and (1.6) we obtain

$$
\begin{align*}
\left(\varphi_{n}\right)_{+}^{\prime}\left(d_{m}\right)-\varphi_{+}^{\prime}(0) & =\left[\left(\varphi_{n}\right)_{+}^{\prime}\left(d_{m}\right)-\varphi_{+}^{\prime}\left(d_{m}\right)\right]-\left[\varphi_{+}^{\prime}\left(d_{m}\right)-\varphi_{+}^{\prime}(0)\right] \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon . \tag{1.7}
\end{align*}
$$

Hence

$$
\begin{equation*}
\left(\varphi_{n}\right)_{+}^{\prime}\left(d_{m}\right)<\varepsilon+\varphi_{+}^{\prime}(0) \tag{1.8}
\end{equation*}
$$

for any $n \geqslant n_{0}$ and $m \in \mathbb{N}$.
By Theorem 1.3 functions $\varphi, \varphi_{n}$ are finite and convex on $I$. Applying Theorem 0.4 and Theorem 0.7 we get

$$
\varphi_{+}^{\prime}(0) \leqslant \frac{\varphi\left(d_{m}\right)}{d_{m}}, \quad \text { for any } \quad n \in \mathbb{N}
$$

and

$$
\left(\varphi_{n}\right)_{+}^{\prime}\left(d_{m}\right) \geqslant\left(\varphi_{n}\right)_{-}^{\prime}\left(d_{m}\right) \geqslant \frac{\varphi_{n}\left(d_{m}\right)}{d_{m}}, \quad \text { for any } \quad m, n \in \mathbb{N} .
$$

Consequently, by (1.8)

$$
\frac{\varphi_{n}\left(d_{m}\right)}{d_{m}} \leqslant\left(\varphi_{n}\right)_{+}^{\prime}\left(d_{m}\right)<\varepsilon+\varphi_{+}^{\prime}(0)<\varepsilon+\frac{\varphi\left(d_{m}\right)}{d_{m}}
$$

for any $n \geqslant n_{0}$ and $m \in \mathbb{N}$, which gives the result.

Theorem 1.8. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence, such that $\varphi_{+}^{\prime}(0)=0$. Take convex functions $h_{1}, \ldots, h_{s}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with $h_{i}(0)=0$ and $h_{i} /(0,+\infty)>0$. Then for any $c>0, b>0$ there is $\delta>0$ such that for arbitrary $\left\{d_{m}\right\} \subset(0, \delta), d_{m} \rightarrow 0$ there exists $n_{0}$ such that

$$
h_{i}\left(b+c d_{m}\right)>h_{i}(b)+\varphi_{n}\left(d_{m}\right)
$$

for any $i \in\{1, \ldots, s\}, n \geqslant n_{0}$ and $m \in \mathbb{N}$.
Proof. By Theorem 0.4 we get
$h_{i}(b+c x)-h_{i}(b) \geqslant\left(h_{i}\right)_{+}^{\prime}(b) \cdot c x, \quad$ for any $\quad i \in\{1, \ldots, s\}, \quad$ and $\quad x>0$.

Put $\varepsilon:=\min _{i \in\{1, \ldots, s\}}\left\{\left(h_{i}\right)_{+}^{\prime}(b) \cdot c\right\}$. Note that $c>0$ and $\left(h_{i}\right)_{+}^{\prime}(b)>0$, for each $i$. Hence $\varepsilon>0$. Since $\lim _{x \rightarrow 0^{+}}(\varphi(x) / x)=\varphi_{+}^{\prime}(0)=0$, there is $\delta_{1}>0$ such that

$$
\begin{equation*}
\varphi(x)<\frac{\varepsilon}{2} x, \quad \text { for any } \quad x<\delta_{1} . \tag{1.10}
\end{equation*}
$$

For $\varepsilon / 2$ choose $\delta_{2}$ from Lemma 1.7. Put $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Now take any sequence $d_{m} \rightarrow 0^{+}$contained in ( $0, \delta$ ). By Lemma 1.7 and (1.10),

$$
\begin{equation*}
\varphi_{n}\left(d_{m}\right)=\left[\varphi_{n}\left(d_{m}\right)-\varphi\left(d_{m}\right)\right]+\varphi\left(d_{m}\right)<\frac{\varepsilon}{2} d_{m}+\frac{\varepsilon}{2} d_{m}=\varepsilon d_{m} \tag{1.11}
\end{equation*}
$$

for any $n \geqslant n_{0}$ and $m \in \mathbb{N}$.
By (1.9) and (1.11),

$$
h_{i}\left(b+c d_{m}\right)-h_{i}(b) \geqslant \varepsilon d_{m}>\varphi_{n}\left(d_{m}\right)
$$

for any $i \in\{1, \ldots, s\}, n \geqslant n_{0}$ and $m \in \mathbb{N}$.

Theorem 1.9. Let $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a convex function with properties: $h(0)=0$ and $h /_{(0,+\infty)}>0$. Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \cup\{+\infty\}$ be a function for which there is $d_{0}>0\left(d_{0}\right.$ can be $\left.\infty\right)$ such that a function $g$ is finite, convex and $g /_{\left(d_{0},+\infty\right)}=+\infty$. Assume furthermore that $g(0)=0, g /_{\left(0, d_{0}\right)}>0, g_{+}^{\prime}(0)>0$ and $g$ is increasing on $\mathbb{R}$. Then there is $c \in(0,1)$ such that for any $b \in \mathbb{R}$, $d \in \mathbb{R} \backslash\{0\}$ with $h(|b|)<2, h(|d|)<2$,

$$
h(|b+c d|)<h(|b|)+g(|d|) .
$$

Proof. Suppose $b \geqslant 0, d>0$. Assume $\beta=g_{+}^{\prime}(0)>0$. By Theorem 0.4 and by $\lim _{x \rightarrow d_{0}^{+}} g(x) \leqslant g\left(d_{0}\right)$,

$$
\begin{equation*}
\beta=g_{+}^{\prime}(0) \leqslant \frac{g(x)}{x}, \quad \text { for every } \quad x \in \mathbb{R}^{+} . \tag{1.12}
\end{equation*}
$$

Note that $0<d<x_{0}, 0<b<x_{0}$ where $x_{0}$ is such that $h\left(x_{0}\right)>2$. Hence by Theorem 0.8, $h$ fulfills a Lipschitz condition on $\left[-2 x_{0}, 2 x_{0}\right]$ with a constant $M$. Take $c \in(0,1)$ such that $c<\beta / M$. Then

$$
h(b+c d)-h(b) \leqslant M \cdot c d<\beta d \leqslant g(d)
$$

for any $b \in\left[0, x_{0}\right), d \in\left(0, x_{0}\right)$.

Note that for any $b, d$

$$
h(|b+c d|)<h(|b|+c|d|),
$$

which completes the proof.
Corollary 1.10. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence, with $\varphi_{+}^{\prime}(0)>0$. Take a convex function $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with properties: $h(0)=0$ and $h /_{\left(0, d_{0}\right)}>0$. Then there is $c \in(0,1)$ such that for any $b \in \mathbb{R}, d \in \mathbb{R} \backslash\{0\}$, $h(|b|)<2, h(|d|)<2$ we have

$$
h(|b+c d|)<h(|b|)+\varphi(|d|),
$$

where $\varphi$ is given by (1.1).
Proof. By Theorem 1.3 we can take the greatest number $d_{0}$ (or $\infty$ ) such that a function $\varphi /\left(-\infty, d_{0}\right)$ is finite and convex. Then $\varphi$ with $d_{0}$ satisfies the assumptions of Theorem 1.9.

Lemma 1.11. Take $P \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$ given by $P \mathbf{x}=\mathbf{x}-\left(\lim _{n \rightarrow \infty} x_{n}\right) \cdot \mathbf{y}$, for every $\mathbf{x} \in \mathscr{X}_{\mathscr{F}}$, where $\mathbf{y}=\left\{y_{n}\right\}_{n \in \mathbb{N}} \in \mathscr{X}_{\mathscr{F}}$ and $\lim _{n \rightarrow \infty} y_{n}=1$. Fix $\mathbf{x} \in \mathscr{X}_{\mathscr{F}}$. Then for any $\varepsilon>0$ there are $1 \leqslant j_{1}<j_{2}, M_{0}$ such that for any $M \geqslant M_{0}$ we can choose $K_{0}(M), j_{3}, \ldots, j_{2 M}$ for which

$$
\rho_{\mathscr{F}}\left((P \mathbf{x})_{j_{1}, \ldots, j_{2 M}, k}\right)>\rho(P \mathbf{x})-\varepsilon
$$

holds for every $k \geqslant K_{0}(M)$.
Proof. The proof is tedious and uses only the continuity of the functions $f_{i}$, thus we omit it.

Remark 1.12. $P \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$ is a norm-one projection if and only if for arbitrary $\mathbf{x} \in \mathscr{X}_{\mathscr{F}} \rho(\mathbf{x}) \leqslant 1$ implies $\rho(P \mathbf{x}) \leqslant 1$.

Lemma 1.13. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence. Consider the sequence $\mathbf{x}=\left\{x_{n}\right\}$, such that $x_{n}=x$ for every $n \geqslant n_{0}$. Then $\mathbf{x} \in \mathscr{X}_{\mathscr{F}}$.

Proof. The proof is routine, so we omit it.
Remark 1.14. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence. Then the following conditions are equivalent:
(1) $\quad P \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$;
(2) $P$ is of the form $P \mathbf{x}=\mathbf{x}-\left(\lim _{n \rightarrow \infty} x_{n}\right) \cdot \mathbf{y}$, for every $\mathbf{x} \in \mathscr{X}_{\mathscr{F}}$, where $\mathbf{y}=\left\{y_{n}\right\}_{n \in \mathbb{N}} \in \mathscr{X}_{\mathscr{F}}$ and $\lim _{n \rightarrow \infty} y_{n}=1$.

Proof. For a projection $P \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$ putting $\mathbf{y}=\mathbf{e}-P(\mathbf{e})$, where $\mathbf{e}=(1,1,1, \ldots)$, we get the result.

## 2. MAIN RESULTS

If $\mathscr{F}=\left\{f_{n}\right\}$ is a degenerate Orlicz sequence, then by Lemma 1.5 we can easily get the following

Remark 2.1. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a degenerate Orlicz sequence. Then $\mathscr{X}_{\mathscr{F}}=\mathscr{Y}_{\mathscr{F}}$ and consequently $\mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)=\{\mathrm{id}\}$. Therefore, we will further deal only with the case when $\mathscr{F}=\left\{f_{n}\right\}$ is a proper Orlicz sequence.

Theorem 2.2. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence. Take $P_{0} \in \mathscr{P}\left(\mathscr{X}_{\mathscr{O}}, \mathscr{Y}_{\mathscr{F}}\right)$ given by $P_{0} \mathbf{x}=\mathbf{x}-\left(\lim _{n \rightarrow \infty} x_{n}\right) \cdot(1,1, \ldots)$, for any $\mathbf{x}=\left\{x_{n}\right\} \in \mathscr{X}_{\mathscr{F}}$. Then $\left\|P_{0}\right\|=1$ and consequently $P_{0}$ is a minimal projection.

Proof. In view of Remark 1.12, it is sufficient to show that for any $\mathbf{x} \in \mathscr{X}_{\mathscr{F}}$ inequality $\rho(\mathbf{x}) \leqslant 1$ implies $\rho\left(P_{0} \mathbf{x}\right) \leqslant 1$.

To do this take any $\mathbf{x} \in \mathscr{X}_{\mathscr{F}}$ such that $\rho(\mathbf{x}) \leqslant 1$ and $\lim _{n \rightarrow \infty} x_{n}=d \neq 0$. Fix any $\varepsilon>0$. By Lemma 1.11 there exist $M_{0}, j_{1}<\cdots<j_{2 M}, K_{0}\left(M_{0}\right)$ such that

$$
\begin{equation*}
\rho\left(P_{0} \mathbf{x}\right)-\varepsilon<\rho_{\mathscr{F}}\left(\left(P_{0} \mathbf{x}\right)_{j_{1}, \ldots, j_{2 M_{0}}, k}\right), \quad \text { for every } \quad k \geqslant K_{0}\left(M_{0}\right) . \tag{2.1}
\end{equation*}
$$

Since $\left|x_{n}\right| \rightarrow|d|$ and $\left|x_{n}-d\right| \rightarrow 0$, there is $k_{1}>K_{0}$ such that $\left|x_{k_{1}}\right|>|d| / 2$ and $\left|x_{k_{1}}-d\right|<|d| / 2$. Then

$$
\begin{equation*}
f_{M_{0}+1}\left(\left|x_{k_{1}}\right|\right) \geqslant f_{M_{0}+1}(|d| / 2) \geqslant f_{M_{0}+1}\left(\left|x_{k_{1}}-d\right|\right) . \tag{2.2}
\end{equation*}
$$

Since $P_{0} \mathbf{x}=\left\{x_{n}-d\right\}_{n \in \mathbb{N}}$, it follows from (2.2) that

$$
\rho_{\mathscr{F}}\left((\mathbf{x})_{j_{1}, \ldots, j_{2 M_{0}}, k_{1}}\right) \geqslant \rho_{\mathscr{F}}\left(\left(P_{0} \mathbf{x}\right)_{j_{1}}, \ldots, j_{2 M_{0}}, k_{1}\right) .
$$

Consequently, by (2.1) we get

$$
\rho_{\mathscr{F}}\left((\mathbf{x})_{j_{1}, \ldots, j_{2 M_{0}}, k_{1}}\right) \geqslant \rho_{\mathscr{F}}\left(\left(P_{0} \mathbf{x}\right)_{j_{1}}, \ldots, j_{2 M_{0}}, k_{1}\right)>\rho\left(P_{0} \mathbf{x}\right)-\varepsilon .
$$

Hence $\rho\left(P_{0} \mathbf{x}\right) \leqslant \rho(\mathbf{x})$, which completes the proof.
Now let us proceed to the proof of the main result. For this purpose let us make a usefull definition.

Definition 2.3. Let $n_{1}, n_{2}, \ldots, n_{n_{0}+1}$ be fixed integers, all even or all odd, such that $n_{k+1}>n_{k}+6$. For arbitrary numbers $b, d$, $e$ let us denote by $\mathbf{x}(b, d, e)$ the following sequence
where $\gamma \in\{-1,1\}$. By Lemma 1.13, $\mathbf{x}(b, d, e) \in \mathscr{X}_{\mathscr{F}}$.

Now we will prove a crucial lemma.
Lemma 2.4. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence. Take $\left\{n_{k}\right\}$ the same as in Definition 2.3. Then for any $0<b_{1}<b_{2}$ there exist $e>0$ and $d_{1}>0$ such that for all $b \in\left[b_{1}, b_{2}\right]$ and $d \leqslant d_{1}$ we can choose $1 \leqslant l_{1}<\cdots<l_{n_{0}}$ for which
(1) if $\gamma=1$ then $\rho(\mathbf{x}(b, d, e)) \leqslant f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}}}(e)+2 \varphi_{n_{0}}(d)$; moreover, for some $j_{1}, \ldots, j_{2 m}$ the sequence $\mathbf{x}(b, d, e)_{j_{1}, \ldots, j_{2 m}}$ has a form

$$
(0, \ldots, \underbrace{0, \underbrace{0^{*}-\gamma b}_{\text {coordinate }}, 0, \ldots,}_{l_{1} \text { th }} \underbrace{0}_{l_{\text {th }} \text { th coordinate }}, \begin{array}{c}
n_{1}^{n_{2}}-\gamma \gamma
\end{array}, \ldots, \underbrace{0^{*}-\gamma e}_{l_{n_{0}} \text { th coordinate }}, 0,0, \ldots) ;
$$

(2) if $\gamma=-1$ then $\rho(\mathbf{x}(b, d, e)) \leqslant f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}}-1}(e)+$ $f_{l_{0}}(e+d)+2 \varphi_{n_{0}}(d) ;$ moreover, for some $j_{1}, \ldots, j_{2 m}$ the ${ }^{n_{n_{0}}}$ sequence $\mathbf{x}(b, d, e)_{j_{1}, \ldots, j_{2 m}}$ has a form

$$
(0, \ldots, \underbrace{0,0^{*}-\gamma b}_{l_{1} \text { th coordinate }}, 0, \ldots, \underbrace{0^{*}-\gamma}_{l_{2} \text { th coordinate }}, 0, \ldots, \underbrace{n_{n_{0}} n_{n_{0}+1}^{n_{n_{0}}} d-\gamma e}_{l_{n_{0}} \text { th coordinate }}, 0,0, \ldots),
$$

(the sequence $\mathbf{x}(b, d, e)_{j_{1}, \ldots, j_{2 m}}$ defined above differs from a similar sequence described in (1) only on the coordinate $l_{n_{0}}$ ).

Here the symbol $z_{z}^{k}$ denotes that $z$ is taken from the kth coordinate of the sequence $\mathbf{x}(b, d, e)$, and $0^{*}-\stackrel{n}{z}$ is a shortened notation for ${ }^{n+1}{ }_{0}-\stackrel{n}{z}$.

Proof. Let us denote by $\Gamma$ the set of all triples $\left(\gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime}\right)$ such that $\gamma_{1} \in\{0,1\}, \gamma_{1}^{\prime} \in\{0,1\}, \gamma_{2}=1$ when $\gamma_{1}=0$, and $\gamma_{2} \in\{0,1\}$ when $\gamma_{1}=1$.

For fixed $\left(\gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime}\right) \in \Gamma$ a sequence $l_{1}, \ldots, l_{k_{0}}\left(k_{0} \leqslant n_{0}\right)$ will be called $\left(\gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime}\right)$ possible if there exist $j_{1}<\cdots<j_{2 m+1}$ such that

$$
\begin{aligned}
\rho_{\mathscr{F}}\left(\mathbf{x}(b, d, e)_{j_{1}, \ldots, j_{2 m+1}}\right)= & f_{l_{1}}\left(\gamma_{1} b-\gamma_{2} e\right)+f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}\left(e-\gamma \gamma_{1}^{\prime} d\right) \\
& + \text { some elements of form } f_{k}(d), \\
& \text { where } k>l_{k_{0}} .
\end{aligned}
$$

Let $\chi_{k}^{\gamma_{k}^{\prime}(d)}=\sup _{k<k_{1}<k_{2}}\left\{f_{k_{1}}(d)+f_{k_{2}}\left(\left(1-\gamma_{1}^{\prime}\right) d\right)\right\}$. By the definition of $\rho(\mathbf{x}(b, d, e))$, it is easy to see that

$$
\begin{aligned}
\rho(\mathbf{x}(b, d, e))=\max \{ & \max \left\{f_{l_{1}}\left(\gamma_{1} b-\gamma_{2} e\right)+f_{l_{2}}(e)+\cdots\right. \\
& +f_{l_{k_{0}}}\left(e-\gamma \gamma_{1}^{\prime} d\right)+\chi_{l_{k_{0}}}^{\gamma_{1}^{\prime}}(d), \text { where }\left(\gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime}\right) \in \Gamma \\
& \text { and } \left.l_{1}, \ldots, l_{k_{0}} \text { is a }\left(\gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime}\right) \text { possible sequence }\right\},
\end{aligned}
$$

$$
\begin{align*}
\max \{ & f_{l_{1}}\left(\gamma_{1} b-\gamma \gamma_{1}^{\prime} d\right)+\chi_{l_{1}}^{\gamma_{1}^{\prime}}(d), \text { where } \gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime} \in \Gamma \\
& \text { and } \left.\left.l_{1} \leqslant\left[\frac{n_{1}+1}{2}\right]\right\},\left\{\chi_{0}^{1}(d)\right\}\right\} . \tag{2.4}
\end{align*}
$$

Since numbers $l_{1}, \ldots, l_{k_{0}}$ appearing in possible sequences can be estimated from above by $\left[\left(n_{n_{0}}+1\right) / 2\right]$, we can write above max instead of sup.

Now, consider the functions $\check{f}_{k}=\inf _{n \leqslant[(k+1) / 2]} f_{n}, \hat{f}_{k}=\sup _{n \leqslant[(k+1) / 2]} f_{n}$, $\varphi_{n}=\sup _{i \geqslant n} f_{i}$. (Here the symbol $[\alpha]$ denotes the greatest integer less or equal to $\alpha$.)

Note that $\check{f}_{k}$ and $\hat{f}_{k}$ are convex for each $k$, moreover $\check{f}_{k}(0)=\hat{f}_{k}(0)=0$. Hence $\check{f}_{k}$ and $\hat{f}_{k}$ are also increasing.

Choose $d_{0}$ from Theorem 1.3. Then $\psi /\left(-\infty, d_{0}\right)$ is finite and convex.
Now take $e \in \mathbb{R}$ for which

$$
\begin{equation*}
0<e<d_{0} / 2 \quad \text { and } \quad n_{0} \psi(e)<\hat{f}_{n_{1}}\left(b_{1}\right) . \tag{2.5}
\end{equation*}
$$

By Theorem 0.8, $\hat{f}_{i}$ fulfills a Lipschitz condition on $\left[-\left(b_{2}+1\right), b_{2}+1\right]$. Hence, by (2.5), there is $d_{1}$ such that for any $d \leqslant d_{1}, b \geqslant b_{1}$ and any $\gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime}$ :

$$
\begin{equation*}
\hat{f}_{n_{1}}\left(\gamma_{1} b-\gamma \gamma_{1}^{\prime} d\right)+2 \psi(d)<\hat{f}_{n_{1}}\left(\gamma_{1} b\right)+\check{f}_{n_{n_{0}}}(e) ; \tag{1}
\end{equation*}
$$

(2) for any $i \leqslant\left[\frac{n_{n_{0}}+1}{2}\right] f_{i}(e+d)-f_{i}(e)+2 \psi(d)<\check{f}_{n_{n_{0}}}(e)$;
(3) $\left(n_{0}-1\right) \psi(e)+\psi(e+d)+2 \psi(d)<\hat{f}_{n_{1}}\left(b_{1}\right)$;
(4) $2 \psi(d)<\check{f}_{n_{n_{0}}}(e)$.

We divide our proof into two steps.
Step I. The following equality holds

$$
\begin{aligned}
\rho(\mathbf{x}(b, d, e))=\max & \left\{f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}\left(e-\gamma \gamma_{1}^{\prime} d\right)+\chi_{k_{k_{0}}}^{\gamma_{1}^{\prime}}(d),\right. \\
& \text { where } \gamma_{1}^{\prime} \in\{0,1\} \text { and } l_{1}, \ldots, l_{k_{0}} \\
& \text { is a } \left.\left(1,0, \gamma_{1}^{\prime}\right) \text { possible sequence }\right\} .
\end{aligned}
$$

For this purpose let us make some estimates.
(1) For any $\gamma_{1}, \gamma_{1}^{\prime}$ and $l_{1} \leqslant\left[\left(n_{n_{0}}+1\right) / 2\right]$

$$
\begin{aligned}
\max \left\{f_{l_{1}}\left(\gamma_{1} b-\gamma \gamma_{1}^{\prime} d\right)+\chi_{l_{1}}^{\gamma_{1}^{\prime}}(d), \chi_{0}^{1}(d)\right\} & \leqslant \hat{f}_{n_{1}}\left(b-\gamma \gamma_{1}^{\prime} d\right)+2 \psi(d) \\
& <\hat{f}_{n_{1}}(b)+\check{f}_{n_{n_{0}}}(e) \leqslant f_{l_{1}}(b)+f_{l_{1}^{\prime}+1}(e) .
\end{aligned}
$$

The last equality holds for $l_{1}^{\prime}$ such that $\hat{f}_{n_{1}}(b)=f_{l_{1}^{\prime}}(b)$ and $l_{1}^{\prime} \leqslant\left[\left(n_{n_{0}}+1\right) / 2\right]$. Note that the sequence $l_{1}^{\prime}, l_{1}^{\prime}+1$ is $(1,0,0)$ possible.
(2) For any system $\left(0,1, \gamma_{1}^{\prime}\right)$ and $\left(0,1, \gamma_{1}^{\prime}\right)$ possible sequence $l_{1}, \ldots, l_{k_{0}}$ we have

$$
\begin{aligned}
f_{l_{1}}(e) & +\cdots+f_{l_{k_{0}}}\left(e-\gamma \gamma_{1}^{\prime} d\right)+2 \psi(d) \\
& \leqslant\left(k_{0}-1\right) \psi(e)+\psi(e+d)+2 \psi(d) \\
& \leqslant\left(n_{0}-1\right) \psi(e)+\psi(e+d)+2 \psi(d)<\hat{f}_{n_{1}}\left(b_{1}\right) \leqslant \hat{f}_{n_{1}}(b)=f_{l_{1}^{\prime}}(b),
\end{aligned}
$$

where $l_{1}^{\prime} \leqslant\left[\left(n_{1}+1\right) / 2\right]$. It is clear that the sequence $l_{1}^{\prime}$ is $(1,0,0)$ possible.
(3) For any system ( $1,1, \gamma_{1}^{\prime}$ ) and ( $1,1, \gamma_{1}^{\prime}$ ) possible sequence $l_{1}, \ldots, l_{k_{0}}$ we have

$$
\begin{aligned}
& f_{l_{1}}(b-e)+\cdots+f_{k_{k_{0}}}\left(e-\gamma \gamma_{1}^{\prime} d\right)+f_{k_{1}}(d)+f_{k_{2}}\left(\left(1-\gamma_{1}^{\prime}\right) d\right) \\
& \quad<f_{l_{1}}(b)+\cdots+f_{l_{k_{0}}}\left(e-\gamma \gamma_{1}^{\prime} d\right)+f_{k_{1}}(d)+f_{k_{2}}\left(\left(1-\gamma_{1}^{\prime}\right) d\right)
\end{aligned}
$$

for any $k_{2}>k_{1}>l_{k_{0}}$.
Let $\rho_{\mathscr{F}}\left(\mathbf{x}(b, d, e)_{j_{1}, \ldots, j_{2 m+1}}\right)$ has the form of the left side above inequality. Assume furthermore that $e$ appearing in the factor $f_{l_{1}}(b-e)$ is taken from the $n_{j}$ th coordinate in the sequence $\mathbf{x}(b, d, e)$. Between the $n_{1}$ th coordinate and the $n_{j}$ th coordinate in the sequence $\mathbf{x}(b, d, e)$ there is at least one zero. Taking this zero and putting it in place of earlier mentioned $e$ in the sequence $\mathbf{x}(b, d, e)_{j_{1}, \ldots, j_{2 m+1}}$ we get a sequence which $\mathscr{F}$-modular (see (0.1)) is equal to the right side above inequality. Thus sequence $l_{1}, \ldots, l_{k_{0}}$ is ( $1,0, \gamma_{1}^{\prime}$ ) possible.

Step II. If $l_{1}<\cdots<l_{k_{0}}$ is a $\left(1,0, \gamma_{1}^{\prime}\right)$ possible sequence, then there are $l_{2}^{\prime}, \ldots, l_{n_{0}}^{\prime}, l_{1}<l_{2}^{\prime}<\cdots<l_{n_{0}}^{\prime}$ and $\left\{l_{1}, l_{2}, \ldots, l_{k_{0}}\right\} \subset\left\{l_{1}, l_{2}^{\prime}, \ldots, l_{n_{0}}^{\prime}\right\}$. Moreover, the sequence $l_{1}, l_{2}^{\prime}, \ldots, l_{n_{0}}^{\prime}$ is, for any $\gamma_{1}^{\prime \prime} \in\{0,1\},\left(1,0, \gamma_{1}^{\prime \prime}\right)$ possible, also there are $j_{1}, \ldots, j_{2 m}$ such that $\mathbf{x}(b, d, e)_{j_{1}, \ldots, j_{2 m}}$ has a form

$$
\begin{aligned}
& \underbrace{\mathbf{x}(b, d, e)_{k}-\gamma e}, 0, \ldots) \\
& l_{n_{0}} \text { th coordinate }
\end{aligned}
$$

for any $k>n_{0}$.
To do this, take a $\left(1,0, \gamma_{1}^{\prime}\right)$ possible sequence $l_{1}, \ldots, l_{k_{0}}$. Then there exist $j_{1}, \ldots, j_{2 m+1}$ such that $\rho_{\mathscr{F}}\left(\mathbf{x}(b, d, e)_{j_{1}, \ldots, j_{2 m+1}}\right)=f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}$ $\left(e-\gamma \gamma_{1}^{\prime} d\right)$. If in the sequence $\mathbf{x}(b, d, e)_{j_{1}}, \ldots, j_{2 m+1}, e($ or $b)$ which appears on
the $l_{i}$ th (resp. $l_{i+1}$ th) coordinate is taken from the $n_{p}$ th (resp. $n_{q}$ th) coordinate of the sequence $\mathbf{x}(b, d, e)$, then $l_{i+1}-l_{i} \leqslant\left(n_{q}-n_{p}\right) / 2-1$.

Consider a sequence $\mathbf{x}(b, d, e)_{1,2, \ldots, 2\left[\left(n_{1}-1\right) / 2\right], n_{1}, \ldots, n_{n_{0}} k}$, where after $n_{1}$ there are all numbers in succession up to $n_{0}$. In this sequence between the terms of forms $0^{*}-\gamma_{p}\left(\right.$ or $0^{*}-\gamma b$ ) and $0^{*}-\gamma e$ there are exactly $\left(n_{q}-n_{p}\right) / 2-1$ coordinates (having a form $0-0$ or $0-\gamma e$ ). Thus by removing a proper number of systems having a form $0-0$ or $0-\gamma e$ we get a sequence $\mathbf{x}(b, d, e)_{j_{1}^{\prime}, \ldots, j_{2 m_{1}}^{\prime}}$, which has on the $l_{i}$ th coordinate $(i>1)$ term $0^{*}-\gamma e$, and on the $l_{1}$ th term $0^{*}-\gamma b$.

Assume that this sequence (i.e., $\left.\mathbf{x}(b, d, e)_{j_{1}^{\prime}, \ldots, j_{2 m 1}^{\prime}}\right)$ has $t$ coordinates of forms $0^{*}-\gamma b$ or $0^{*}-\gamma e$, and designate them successively by $s_{1}, \ldots, s_{t}$ (obviously $l_{1}=s_{1}$ and $\left\{l_{2}, \ldots, l_{k_{0}}\right\} \subset\left\{s_{1}, \ldots, s_{t}\right\}$ ).

Fix coordinates $s_{i}$ and $s_{i+1}(i \in\{1, \ldots, t-1\})$, assume that a non-zero term (i.e., $\gamma b$ or $\gamma e$ ) on the $s_{i}$ th (resp. $s_{i+1}$ th) coordinate in the sequence $\mathbf{x}(b, d, e)_{j_{1}^{\prime}, \ldots, j_{2 m_{1}}^{\prime}}$ is taken from the $n_{p}$ th (resp. $n_{q}$ th) coordinate of the sequence $\mathbf{x}(b, d, e)$.

There exists $u \in\{p+1, \ldots, q\}$ such that

$$
\begin{equation*}
\frac{n_{u-1}-n_{p}}{2}<s_{i+1}-s_{i} \leqslant \frac{n_{u}-n_{p}}{2} . \tag{2.7}
\end{equation*}
$$

If $j_{2 \alpha+1}^{\prime}=n_{p}$ and $j_{2 \beta+1}^{\prime}=n_{q}$, then considering the sequence

$$
\begin{equation*}
\mathbf{x}(b, d, e)_{j_{1}^{\prime}, \ldots, j_{2 x}^{\prime}, n_{p}, \ldots, n_{u+1}, j_{2 \beta+3}^{\prime}, \ldots, j_{2 m_{1}}^{\prime}} \tag{2.8}
\end{equation*}
$$

where after $n_{p}$ appear successively all numbers up to $n_{u+1}$, we can see that in this sequence between coordinates in which there appear terms $0^{*}-\gamma_{e}^{n_{p}}$ (or $0^{*}-\gamma^{n_{1}}$ ) and $0^{*}-\gamma_{e}^{n_{u}}$ there are $\left(n_{u}-n_{p}\right) / 2-1$ coordinates, of which $u-p-1$ have a form $0^{*}-\gamma$ e. Since $\left(n_{u-1}-n_{p}\right) / 2 \geqslant u-p-1$ and (2.7) holds true, then by removing a proper numbers of systems of the form $0-0$ from the sequence (2.8) we will get the sequence $j_{1}^{\prime \prime}, \ldots, j_{2 m_{1}}^{\prime \prime}$ such that $\mathbf{x}(b, d, e)_{j_{1}^{\prime}, \ldots, j_{2 m_{1}}^{\prime}}$ is equal to $\mathbf{x}(b, d, e)_{j_{1}^{\prime \prime}, \ldots, j_{2 m_{1}}^{\prime \prime}}$ on coordinates from 1 to $s_{i}$ and from the coordinate $s_{i+1}$ up. Moreover, in this sequence on coordinates from $s_{i}+1$ to $s_{i+1}-1$ there appear all terms of the form $0^{*}-\gamma_{1}^{n_{1}}$, for all $j \in\{p+1, \ldots, u-1\}$, and on the coordinate $s_{n_{u}}$ there is a term $0^{*}-\gamma_{\nu}^{n_{u}}$.

Now applying this procedure to a sequence $\mathbf{x}(b, d, e)_{j_{1}^{\prime}, \ldots, j_{2 m_{1}}^{\prime}}$ and coordinates $s_{1}, s_{2}$, we get a new sequence and applying to it the same procedure to coordinates $s_{2}, s_{3}$, we get the next sequence, and so on. Finally, we get a sequence $\mathbf{x}(b, d, e)_{j_{1}^{\prime \prime}, \ldots, j_{2 m_{1}}^{\prime \prime}}$, which has $t_{1}$ coordinates of the form $0^{*}-\gamma e$ or $0^{*}-\gamma b$. Let these are the places $r_{1}<r_{2}<\cdots<r_{t_{1}}$ then $l_{1}=s_{1}=r_{1}$ and $\left\{l_{2}, \ldots, l_{k_{0}}\right\} \subset\left\{s_{2}, \ldots, s_{t}\right\} \subset\left\{r_{2}, \ldots, r_{t_{1}}\right\}$. Moreover on the coordinate $r_{1}$ there is
a term $0^{*}-\gamma^{n_{1}}$ and on the coordinate $r_{i}\left(\right.$ for $\left.i=2, \ldots, t_{1}\right) 0^{*}-\gamma^{n_{j}}$. Now by completing a sequence $j_{1}^{\prime \prime}, \ldots, j_{2 m_{1}}^{\prime \prime}$ to a sequence $j_{1}^{\prime \prime}, \ldots, j_{2 m_{1}}^{\prime \prime}, n_{t_{1}+1}, n_{t_{1}+1}+1$, $\ldots, \quad n_{n_{0}-1}, n_{n_{0}-1}+1, n_{n_{0}}, k$, where after the term $j_{2 m_{1}}^{\prime \prime}$ there appear successively all pair of terms from $n_{t_{1}+1}, n_{t_{1}+1}+1$ to $n_{n_{0}-1}, n_{n_{0}-1}+1$, we will get a sequence which has the properties required in Step II.

Now let us come back to the proof of lemma.
First we consider the case $\gamma=1$.
Let $l_{1}, l_{2}, \ldots, l_{k_{0}}\left(k_{0}<n_{0}\right)$ be any $\left(1,0, \gamma_{1}^{\prime}\right)$ possible sequence. Choose for it a sequence $l_{1}, l_{2}^{\prime}, \ldots, l_{n_{0}}^{\prime}$ from Step II and assume that $l_{i_{0}}^{\prime} \notin\left\{l_{1}, l_{2}, \ldots, l_{k_{0}}\right\}$. Then

$$
\begin{aligned}
f_{l_{1}}(b) & +f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}\left(e-\gamma_{1}^{\prime} d\right)+\chi_{l_{k_{0}}}^{\gamma_{1}^{\prime}}(d) \\
& \leqslant f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}(e)+2 \psi(d) \\
& <f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}(e)+f_{l_{l_{0}^{\prime}}^{\prime}}(e) \\
& \leqslant f_{l_{1}}(b)+f_{l_{2}^{\prime}}^{\prime}(e)+\cdots+f_{l_{n_{0}}^{\prime}}^{\prime}(e) .
\end{aligned}
$$

Thus by Step I and properties of $\left\{l_{1}, l_{2}^{\prime}, \ldots, l_{n_{0}}^{\prime}\right\}$ we get

$$
\begin{aligned}
& \rho(\mathbf{x}(b, d, e))=\max \left\{f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}\left(e-\gamma_{1}^{\prime} d\right)+\chi_{l_{0}}^{\gamma_{1}^{\prime}}(d),\right. \\
& \text { where } \gamma_{1}^{\prime} \in\{0,1\} \text { and } l_{1}, \ldots, l_{k_{0}} \\
& \text { is a } \left.\left(1,0, \gamma_{1}^{\prime}\right) \text { possible sequence }\right\} \\
& =\max \left\{f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{l_{0}}}(e)+\chi_{l_{n_{0}}}^{0}(d)\right. \text {, }
\end{aligned}
$$

where $l_{1}, \ldots, l_{n_{0}}$ is a $(1,0,0)$ possible sequence having properties required in Step II $\}$
$=\left(\right.$ for a certain $(1,0,0)$ possible sequence $l_{1}^{1}, \ldots, l_{n_{0}}^{1}$ having properties required in Step II)

$$
\begin{aligned}
& =f_{l_{1}^{1}}(b)+f_{l_{2}^{1}}(e)+\cdots+f_{l_{n_{0}}^{1}}(e)+\chi_{l_{n_{0}}^{1}}^{0}(d) \\
& \leqslant f_{l_{1}^{1}}(b)+f_{l_{2}^{1}}^{(e)+\cdots+f_{l_{n_{0}}^{1}}(e)+2 \psi_{n_{0}}(d) .}
\end{aligned}
$$

Hence the lemma is proved in this case.
Now, consider the second case, i.e., $\gamma=-1$.
Let $l_{1}, l_{2}, \ldots, l_{k_{0}}\left(k_{0}<n_{0}\right)$ be any $\left(1,0, \gamma_{1}^{\prime}\right)$ possible sequence. Choose for it a sequence $l_{1}, l_{2}^{\prime}, \ldots, l_{n_{0}}^{\prime}$ from Step II and assume that $l_{i_{0}}^{\prime} \notin\left\{l_{1}, l_{2}, \ldots, l_{k_{0}}\right\}$. Then

$$
\begin{aligned}
f_{l_{1}}(b) & +f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}\left(e+\gamma_{1}^{\prime} d\right)+\chi_{l_{k_{0}}}^{\gamma_{1}^{\prime}}(d) \\
& \leqslant f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}\left(e+\gamma_{1}^{\prime} d\right)+2 \psi(d) \\
& <f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}(e)+f_{l_{l_{0}^{\prime}}^{\prime}}(e) \\
& \leqslant f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}}^{\prime}}(e+d) .
\end{aligned}
$$

Thus by Step I and properties of $\left\{l_{1}, l_{2}^{\prime}, \ldots, l_{n_{0}}^{\prime}\right\}$ we get

$$
\begin{aligned}
& \rho(\mathbf{x}(b, d, e))=\max \left\{f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{k_{0}}}\left(e+\gamma_{1}^{\prime} d\right)+\chi_{l_{k_{0}}}^{\gamma_{1}^{\prime}}(d),\right. \\
& \text { where } \gamma_{1}^{\prime} \in\{0,1\} \text { and } l_{1}, \ldots, l_{k_{0}} \\
& \text { is a } \left.\left(1,0, \gamma_{1}^{\prime}\right) \text { possible sequence }\right\} \\
& =\max \left\{f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}}}(e+d)+\chi_{l_{n_{0}}}^{0}(d),\right.
\end{aligned}
$$

where $l_{1}, \ldots, l_{n_{0}}$ is a $(1,0,1)$ possible sequence having properties required in Step II $\}$
$=\left(\right.$ for a certain $(1,0,1)$ possible sequence $l_{1}^{1}, \ldots, l_{n_{0}}^{1}$ having properties required in Step II)

$$
\begin{aligned}
& =f_{l_{1}^{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}}^{1}}(e+d)+\chi_{l_{n_{0}}^{\prime}}^{0}(d) \\
& \leqslant f_{l_{1}^{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}}^{1}}(e+d)+2 \psi_{n_{0}}(d) .
\end{aligned}
$$

Hence the lemma is proved in this case, too.
Now we are able to prove the following
Theorem 2.5. Let $\mathscr{F}=\left\{f_{n}\right\}$ be a proper Orlicz sequence. Take the "natural projection" $P_{0} \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$ defined in Theorem 2.2. Then $P_{0}$ is the unique minimal projection in $\mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$ if and only if $\varphi_{+}^{\prime}(0)=0$, where $\varphi=\lim \sup _{n \rightarrow \infty} f_{n}$.

Proof. By Theorem 2.2, $P_{0}$ is a minimal projection in $\mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$
Suppose $\varphi^{\prime}(0)=0$ and take any $P \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$. By Remark 1.14 there is $\mathbf{y}=\left\{y_{n}\right\} \in \mathscr{X}_{\mathscr{F}}, \lim _{n \rightarrow \infty} y_{n}=1$ such that

$$
P \mathbf{x}=\mathbf{x}-\left(\lim _{n \rightarrow \infty} x_{n}\right) \cdot \mathbf{y}, \quad \text { for any } \quad \mathbf{x}=\left\{x_{n}\right\} \in \mathscr{X}_{\mathscr{F}} .
$$

Now asume that $P \neq P_{0}$. There are two possible cases:
(1) There is a subsequence $\left\{y_{n_{k}}\right\}$ of the sequence $\left\{y_{n}\right\}$ with properties:

For any $k \in \mathbb{N} y_{n_{k}} \geqslant y_{n_{k}+1}$ and $y_{n_{k}} \geqslant y_{n_{k+1}}$, moreover $y_{n_{1}}>y_{n_{1}+1}$.
Numbers $\left\{n_{k}\right\}, k \in \mathbb{N}$ are all even or all odd, and for any $k \in \mathbb{N}$ $n_{k+1}>n_{k}+6$.
(2) There is a subsequence $\left\{y_{n_{k}}\right\}$ of the sequence $\left\{y_{n}\right\}$ with properties:

For any $k \in \mathbb{N} y_{n_{k}} \leqslant y_{n_{k}+1}$ and $y_{n_{k}} \leqslant y_{n_{k+1}}$, moreover $y_{n_{1}}<y_{n_{1}+1}$.
Numbers $\left\{n_{k}\right\}, k \in \mathbb{N}$ are all even or all odd, and for any $k \in \mathbb{N}$ $n_{k+1}>n_{k}+6$.

Put $c=\left|y_{n_{1}+1}-y_{n_{1}}\right|>0$ and $\gamma=\operatorname{sgn}\left(y_{n_{1}+1}-y_{n_{1}}\right)$.
Consider functions $\check{f}_{k}=\inf _{n \leqslant[(k+1) / 2]} f_{n}, \hat{f}_{k}=\sup _{n \leqslant[(k+1) / 2]} f_{n}, \quad \varphi_{n}=$ $\sup _{i \geqslant n} f_{i}$. (Here the symbol $[\alpha]$ denotes the greatest integer less or equal to $\alpha$.)

Note that $\check{f}_{k}$ and $\hat{f}_{k}$ are convex for each $k$, moreover $\check{f}_{k}(0)=\hat{f}_{k}(0)=0$. Also $\lim _{x \rightarrow \infty} \check{f}_{k}(x)=\lim _{x \rightarrow \infty} \hat{f}_{k}(x)=+\infty$. Therefore there are $b_{1}, b_{2}$, $0<b_{1}<b_{2}$ such that

$$
\begin{equation*}
\frac{1}{4}<\hat{f}_{n_{1}}\left(b_{1}\right)<\frac{1}{2}<1<\check{f}_{n_{1}}\left(b_{2}\right) . \tag{2.9}
\end{equation*}
$$

Choose $d_{0}$ from Theorem 1.3. Then $\psi /\left(-\infty, d_{0}\right)$ is finite and convex.
For numbers $c>0, b_{1}>0$ and functions $f_{1}, \ldots, f_{\left[\left(n_{1}+1\right) / 2\right]}$ take $\delta>0$ from Theorem 1.8. Take any sequence $d_{v} \rightarrow 0^{+}, \quad d_{v} \leqslant \min \left\{\delta, d_{0} / 2\right\}$. By Theorem 1.8 there is $n_{0}$ such that

$$
f_{i}\left(b_{1}+c d_{v}\right)>f_{i}\left(b_{1}\right)+2 \varphi_{n_{0}}\left(d_{v}\right)
$$

for any $i \in\left\{1, \ldots,\left[\left(n_{1}+1\right) / 2\right]\right\}$, and $v \in \mathbb{N}$.
By Corollary 0.6 , a function $h_{i}(x)=f_{i}(x+c d)-f_{i}(x)$ is increasing, for fixed $c, d, i$, thus for $b \geqslant b_{1}$ we have $f_{i}(b+c d)-f_{i}(b) \geqslant f_{i}\left(b_{1}+c d\right)-$ $f_{i}\left(b_{1}\right)>2 \varphi_{n_{0}}(d)$. Hence we get

$$
\begin{equation*}
f_{i}\left(b+c d_{v}\right)>f_{i}(b)+2 \varphi_{n_{0}}\left(d_{v}\right) \tag{2.10}
\end{equation*}
$$

for any $i \in\left\{1, \ldots,\left[\left(n_{1}+1\right) / 2\right]\right\}, v \in \mathbb{N}$, and $b \in\left[b_{1}, b_{2}\right]$.
For $b_{1}<b_{2}$ choose $e, d_{1}$ from Lemma 2.4. Since $d_{v} \rightarrow 0$ there is $d_{v_{0}} \leqslant d_{1}$.
For any $b \in\left[b_{1}, b_{2}\right]$ consider the sequence $\mathbf{x}(b)=\mathbf{x}\left(b, d_{v_{0}}, e\right)$ (see Definition 2.3). Let us remind that $b, e, d_{v_{0}}$ fulfill (2.5) and (2.6) (see the proof of Lemma 2.4).

By the formulas on $P$ and $\mathbf{x}(b)$ we get

$$
\begin{aligned}
P \mathbf{x}(b)= & (-d_{v_{0}} y_{1}, \ldots,-d_{v_{0}} y_{n_{1}-1}, \underbrace{\gamma b-y_{n_{1}} d_{v_{0}}}_{n_{1}}, \underbrace{-y_{n_{1}+1} d_{v_{0}}}_{n_{1}+1}, \ldots, \underbrace{\gamma e-y_{n_{2}} d_{v_{0}}}_{n_{2}}, \\
& \underbrace{-y_{n_{2}+1} d_{v_{0}}}_{n_{n_{0}}}, \ldots, \underbrace{\gamma e-y_{n_{n_{0}}} d_{v_{0}}}_{n_{n_{0}+1}}, \underbrace{-y_{n_{n_{0}}+1} d_{v_{0}}}_{n_{n_{0}+1}}, \ldots,(\underbrace{1}_{\left.1-y_{n_{0}+1}\right) d_{v_{0}}}, \ldots, .
\end{aligned}
$$

Now we are going to show that (in both cases (1) and (2))

$$
\begin{equation*}
\rho(P \mathbf{x}(b))>\rho(\mathbf{x}(b)), \quad \text { for every } \quad b \in\left[b_{1}, b_{2}\right] . \tag{2.11}
\end{equation*}
$$

Consider the case (1), then $\gamma=-1$.
Take $l_{1}, \ldots, l_{n_{0}}$ and $j_{1}, \ldots, j_{2 m}$ from Lemma 2.4, point (2). Modifying $v_{0}$, if necessary, by (2.10) and Lemma 2.4 we have

$$
\begin{aligned}
\rho(P \mathbf{x}(b)) \geqslant & \rho\left((P \mathbf{x}(b))_{j_{1}, \ldots, j_{2 m}}\right) \\
\geqslant & f_{l_{1}}\left(\left|-y_{n_{1}+1} d_{v_{0}}+b+y_{n_{1}} d_{v_{0}}\right|\right) \\
& +f_{l_{2}}\left(\left|-y_{n_{2}+1} d_{v_{0}}+e+y_{n_{2}} d_{v_{0}}\right|\right)+\cdots \\
& +f_{l_{n_{0}-1}}\left(\left|-y_{n_{n_{0}-1}+1} d_{v_{0}}+e+y_{n_{n_{0}-1}} d_{v_{0}}\right|\right) \\
& +f_{l_{n_{0}}}\left(\left|\left(1-y_{n_{n_{0}+1}}\right) d_{v_{0}}+e+y_{n_{n_{0}}} d_{v_{0}}\right|\right) \\
= & f_{l_{1}}(b+(\underbrace{\left.y_{n_{1}}-y_{n_{1}+1}\right) d_{v_{0}}}_{=c})+f_{l_{2}}(e+(\underbrace{\left.y_{n_{2}}-y_{n_{2}+1}\right) d_{v_{0}}}_{\geqslant 0})+\cdots \\
& +f_{l_{n_{0}-1}}(e+(\underbrace{y_{n_{n_{0}-1}}-y_{n_{n_{0}-1}+1}}_{\geqslant 0}) d_{v_{v_{0}}}) \\
& +f_{l_{n_{0}}}(e+d_{v_{0}}+(\underbrace{\left(y_{n_{n_{0}}}-y_{n_{n_{0}+1}}\right) d_{v_{v_{0}}}}_{\geqslant 0}) \\
\geqslant & f_{l_{1}}\left(b+c d_{v_{0}}\right)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}-1}}(e)+f_{l_{n_{0}}}\left(e+d_{v_{0}}\right) \\
> & f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}-1}}(e)+f_{l_{n_{0}}}\left(e+d_{v_{0}}\right)+2 \varphi_{n_{0}}\left(d_{v_{0}}\right) \\
\geqslant & \rho(\mathbf{x}(b)) .
\end{aligned}
$$

Now consider the case (2), then $\gamma=1$.
Take $l_{1}, \ldots, l_{n_{0}}$ and $j_{1}, \ldots, j_{2 m}$ from Lemma 2.4, point (1). Modifying $v_{0}$, if necessary, by (2.10) and Lemma 2.4 we have

$$
\begin{aligned}
\rho(P \mathbf{x}(b)) \geqslant & \rho\left((P \mathbf{x}(b))_{j_{1}, \ldots, j_{2 m}}\right) \\
\geqslant & f_{l_{1}}\left(\left|-y_{n_{1}+1} d_{v_{0}}-b+y_{n_{1}} d_{v_{0}}\right|\right) \\
& +f_{l_{2}}\left(\left|-y_{n_{2}+1} d_{v_{0}}-e+y_{n_{2}} d_{v_{0}}\right|\right)+\cdots \\
& +f_{l_{n_{0}}}\left(\left|-y_{n_{n_{0}}+1} d_{v_{0}}-e+y_{n_{n_{0}}} d_{v_{0}}\right|\right) \\
= & f_{l_{1}}(b+(\underbrace{\left.y_{n_{1}+1}-y_{n_{1}}\right) d_{v_{0}}}_{=c})+f_{l_{2}}(e+(\underbrace{\left.y_{n_{2}+1}-y_{n_{2}}\right) d_{v_{0}}}_{\geqslant 0})+\cdots \\
& +f_{l_{n_{0}}}(e+\underbrace{y_{n_{n_{0}}+1}-y_{n_{n_{0}}}}_{\geqslant 0}) d_{v_{0}}) \\
\geqslant & f_{l_{1}}\left(b+c d_{v_{0}}\right)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}}}(e) \\
> & f_{l_{1}}(b)+f_{l_{2}}(e)+\cdots+f_{l_{n_{0}}}(e)+2 \varphi_{n_{0}}\left(d_{v_{0}}\right) \geqslant \rho(\mathbf{x}(b)) .
\end{aligned}
$$

Now, consider a function $t: b \mapsto \rho(\mathbf{x}(b))$. It can be easily seen that for a fixed $d_{v_{0}}$ and $e$ this function is continuous. And since, by Lemma 2.4, (2.6), and (2.9)

$$
\begin{aligned}
t\left(b_{1}\right) & =\rho\left(\mathbf{x}\left(b_{1}\right)\right) \leqslant \hat{f}_{n_{1}}\left(b_{1}\right)+\left(n_{0}-1\right) \psi(e)+\psi\left(e+d_{v_{0}}\right)+2 \psi\left(d_{v_{0}}\right) \\
& <2 \hat{f}_{n_{1}}\left(b_{1}\right)<1, \\
t\left(b_{2}\right) & =\rho\left(\mathbf{x}\left(b_{2}\right)\right) \geqslant \hat{f}_{n_{1}}\left(b_{2}\right)>1,
\end{aligned}
$$

therefore there is $b_{0} \in\left(b_{1}, b_{2}\right)$ such that

$$
1=t\left(b_{0}\right)=\rho\left(\mathbf{x}\left(b_{0}\right)\right) .
$$

Thus for this $b_{0}$, by (2.11), we have

$$
\rho\left(P \mathbf{x}\left(b_{0}\right)\right)>\rho\left(\mathbf{x}\left(b_{0}\right)\right)=1 .
$$

Hence, by Remark 1.12, $\|P\|>1$, and consequently $P_{0}$ is the only minimal projection and has norm equal to 1 .

To prove the converse suppose $\varphi_{+}^{\prime}(0)>0$ (by Corollary $1.4 \varphi_{+}^{\prime}(0)$ exists). Take $c \in(0,1)$ from Corollary 1.10 for a function $h=f_{1}$. Put

$$
\begin{equation*}
\mathbf{y}_{0}=(1-c, 1,1, \ldots), \tag{2.12}
\end{equation*}
$$

and let

$$
\begin{equation*}
P: \mathscr{X}_{\mathscr{F}} \ni \mathbf{x} \mapsto \mathbf{x}-\left(\lim _{n \rightarrow \infty} x_{n}\right) \cdot \mathbf{y}_{0} \in \mathscr{Y}_{\mathscr{F}} . \tag{2.13}
\end{equation*}
$$

By Remark 1.14, $P \in \mathscr{P}\left(\mathscr{X}_{\mathscr{F}}, \mathscr{Y}_{\mathscr{F}}\right)$. Obviously $P \neq P_{0}$, since $\mathbf{y}_{0} \neq(1,1,1, \ldots)$ and there is $\mathbf{x} \in \mathscr{X}_{\mathscr{F}} \backslash \mathscr{Y}_{\mathscr{F}}$.

Take any $\mathbf{x}=\left\{x_{n}\right\} \in \mathscr{X}_{\mathscr{F}}, \rho(\mathbf{x}) \leqslant 1$ and denote $d=\lim _{n \rightarrow \infty} x_{n}$. We show that

$$
\rho(P \mathbf{x}) \leqslant \rho(\mathbf{x}) .
$$

Without loss, we can assume that $d \neq 0$.
Fix any $\varepsilon>0$. By Lemma 1.11 , we can take $1 \leqslant j_{1}<j_{2}, M_{0}$ such that for any $M \geqslant M_{0}$ we can choose $K_{0}(M), j_{3}, \ldots, j_{2 M}$ such that

$$
\begin{equation*}
\rho_{\mathscr{F}}\left((P \mathbf{x})_{j_{1}}, \ldots, j_{2_{M}}, k\right)>\rho(P \mathbf{x})-\varepsilon \tag{2.14}
\end{equation*}
$$

for every $k \geqslant K_{0}(M)$.
If $j_{1} \neq 1$, then by (2.14) we obtain

$$
\rho(\mathbf{x}) \geqslant \rho_{\mathscr{F}}\left(\mathbf{x}_{j_{1}}, \ldots, j_{2 M_{0}}, K_{0}\left(M_{0}\right)\right)=\rho_{\mathscr{F}}\left((P \mathbf{x})_{j_{1}, \ldots, j_{2 M_{0}}, K_{0}\left(M_{0}\right)}\right)>\rho(P \mathbf{x})-\varepsilon,
$$

that is,

$$
\rho(\mathbf{x})>\rho(P \mathbf{x})-\varepsilon .
$$

Now assume that $j_{1}=1$. It will be shown that there exist $M_{1} \geqslant M_{0}$, $K_{1} \geqslant K_{0}\left(M_{1}\right)$ such that

$$
\begin{equation*}
f_{1}\left(\left|x_{j_{2}}-x_{1}\right|\right)+f_{M_{1}+1}\left(\left|x_{K_{1}}\right|\right) \geqslant f_{1}\left(\left|x_{j_{2}}-x_{1}+c d\right|\right)+f_{M_{1}+1}\left(\left|x_{K_{1}}-d\right|\right), \tag{2.15}
\end{equation*}
$$

where $j_{2}, M_{0}, M_{1}, K_{0}\left(M_{1}\right)$ are chosen from (2.14).
If not, then for any $M \geqslant M_{0}, K \geqslant K_{0}(M) f_{1}\left(\left|x_{j_{2}}-x_{1}\right|\right)+f_{M+1}\left(\left|x_{K}\right|\right)<$ $f_{1}\left(\left|x_{j_{2}}-x_{1}+c d\right|\right)+f_{M+1}\left(\left|x_{K}-d\right|\right)$. Since $x_{K} \rightarrow d$, we get

$$
f_{1}\left(\left|x_{j_{2}}-x_{1}\right|\right)+f_{M+1}(|d|) \leqslant f_{1}\left(\left|x_{j_{2}}-x_{1}+c d\right|\right)
$$

for any $M \geqslant M_{0}$.
But by the definition of $\varphi$ there exists a sequence $\left\{M_{l}\right\}$ such that $f_{M_{l}}(|d|) \rightarrow \varphi(|d|), l \rightarrow \infty$. Hence

$$
f_{1}\left(\left|x_{j_{2}}-x_{1}\right|\right)+f_{M_{l}}(|d|) \leqslant f_{1}\left(\left|x_{j_{2}}-x_{1}+c d\right|\right)
$$

for any $l \in \mathbb{N}$. Passing with $l$ to infinity, we get

$$
\begin{equation*}
f_{1}\left(\left|x_{j_{2}}-x_{1}\right|\right)+\varphi(|d|) \leqslant f_{1}\left(\left|x_{j_{2}}-x_{1}+c d\right|\right) . \tag{2.16}
\end{equation*}
$$

By (2.16), $\varphi(|d|)<+\infty$. Since $f_{1}\left(\left|x_{j_{2}}-x_{1}\right|\right)<2$ and $f_{1}(|d|)<2$ (it follows from $\rho(\mathbf{x}) \leqslant 1)$, by Corollary 1.10 we get

$$
\begin{equation*}
f_{1}\left(\left|x_{j_{2}}-x_{1}+c d\right|\right)<f_{1}\left(\left|x_{j_{2}}-x_{1}\right|\right)+\varphi(|d|), \tag{2.17}
\end{equation*}
$$

a contradiction with (2.16).
Now, for $M_{1}$ choose numbers $j_{3}, \ldots, j_{2 m+1}$ from (2.14). Note that, by (2.13), (2.15) is equivalent to

$$
\rho_{\mathscr{F}}\left(\mathbf{x}_{j_{1}, \ldots, j_{2 M_{1}}, K_{1}}\right) \geqslant \rho_{\mathscr{F}}\left((P \mathbf{x})_{j_{1}, \ldots, j_{2 M_{1}}, K_{1}}\right) .
$$

By (2.14),

$$
\rho(\mathbf{x}) \geqslant \rho_{\mathscr{F}}\left(\mathbf{x}_{j_{1}}, \ldots, j_{2 M_{1}}, K_{1}\right) \geqslant \rho_{\mathscr{F}}\left((P \mathbf{x})_{j_{1}}, \ldots, j_{2 M_{1}}, K_{1}\right)>\rho(P \mathbf{x})-\varepsilon .
$$

Thus in both cases we have proved that $\rho(\mathbf{x})>\rho(P \mathbf{x})-\varepsilon$, for any $\varepsilon>0$. By Remark 1.12, $\|P\|=1$, and consequently $P$ is a minimal projection different from $P_{0}$.

## ACKNOWLEDGMENT

The author expresses his gratitude to Dr. Grzegorz Lewicki for many fruitful discussions concerning the subject of this paper.

## REFERENCES

1. F. Beckenbach and R. Bellman, "Inequalities," Springer-Verlag, New York/Berlin, 1961.
2. B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in $L^{1}$, Trans. Amer. Math. Soc. 329 (1992), 289-305.
3. E. W. Cheney and P. D. Morris, On the existence and characterization of minimal projections, J. Reine Angew. Math. 270 (1974), 61-76.
4. C. Franchetti, Projections onto hyperplanes in Banach spaces, J. Approx. Theory 38 (1983), 319-333.
5. R. C. James, Bases and reflexivity of Banach spaces, Ann. Math. 52 (1950), 518-527.
6. H. Koenig and N. Tomczak-Jaegermann, Norms of minimal projections, J. Funct. Anal. 119 (1994), 253-280.
7. M. Kuczma, "An Introduction to the Theory of Functional Equations and Inequalities," PWN, Warsaw, 1985.
8. G. Lewicki, Minimal projections onto two dimensional subspaces of $\ell_{\infty}^{(4)}$, J. Approx. Theory 88 (1997), 92-108.
9. G. Lewicki, On the uniqueness of the minimal projections in spaces of the James Type, Funct. Approx. 25 (1997), 59-65.
10. J. Musielak, "Orlicz Spaces and Modular Spaces," Lecture Notes in Math., SpringerVerlag, New York/Berlin, 1988.
11. W. Odyniec, Codimension one minimal projections in Banach spaces and a mathematical programming problem, Dissertationes Math. 254 (1986).
12. W. Odyniec and G. Lewicki, "Minimal Projections in Banach Spaces," Lecture Notes in Math., Springer-Verlag, Berlin, 1990.
13. W. Odyniec and M. Yakubson, "Projections and Bases of Normed Spaces," Obrazowanie, S. Petersburg, 1988. [In Russian]
14. M. Prophet, Codimension one minimal projections onto the quadratics, J. Approx. Theory 85 (1996), 27-42.
15. R. T. Rockafellar, "Convex Analysis," Princeton Univ. Press, Princeton, NJ, 1972.
16. S. Rolewicz, On projections on subspaces of codimension one, Studia Math. 44 (1990), 17-19.
17. A. Sersouri, On James' type spaces, Trans. Amer. Math. Soc. 310, No. 2 (1988), 715-745.
